Chapter 10 introduces the concept of memory hierarchy

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 0 introduces the concept of memory hierarchy, discussing the principles of memory management and caches. Chapter 11 reviews the requirements of a modern operating system at a second year undergraduate level and describes the approach adopted by the ARM to address these requirements. Chapter 12 introduces the integrated ARM CPU cores (including StrongARM) that incorporate full support for memory management. Chapter 13 covers the issues of designing SoCs with embedded processor cores. Here, the ARM is at the leading edge of technology. Several examples are presented of production embedded system chips to show the solutions that have been developed to the many problems inherent in committing a complex application-specific system to silicon. Chapter 14 moves away from mainstream ARM developments to describe the asynchronous ARM-compatible processors and systems developed at the University of Manchester, England, during the 1990s. After a decade of research the AMULET technology is, at the time of writing, about to take its first step into the commercial domain. Chapter 14 concludes with a description of the DRACO SoC design, the first commercial application of a 32-bit asynchronous microprocessor. A short appendix presents the fundamentals of computer logic design and the terminology which is used in Chapter 1. A glossary of the terms used in the book and a bibliography for further reading are appended at the end of the book, followed by a detailed index. Course The chapters are at an appropriate level for use on undergraduate courses as follows: Year 1: Chapter 1 (basic processor design); Chapter 3 (assembly language programming); Chapter 5 (instruction binaries and reference for assembly language programming). Year 2: Chapter 4 (simple pipeline processor design); Chapter 6 (architectural support for high-level languages); Chapters 10 and 11 (memory hierarchy and architectural support for operating systems). Year 3: Chapter 8 (embedded system debug and test); Chapter 9 (advanced pipelined processor design); Chapter 12 (advanced CPUs); Chapter 13 (example embedded systems). A postgra...
View Full Document

Ask a homework question - tutors are online