The pc for example will change at the end of a clock

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: hown in Figure 1.6 on page 11. This shows enables on all of the registers, function select lines to the ALU (the precise number and interpretation to be determined later), the select control lines for two multiplexers, the control for a tri-state driver to send the ACC value to memory and memory request (MEMrq) and read/write (RnW) control lines. The other signals shown are outputs from the datapath to the control logic, including the opcode bits and signals indicating whether ACC is zero or negative which control the respective conditional jump instructions. The control logic simply has to decode the current instruction and generate the appropriate levels on the datapath control signals, using the control inputs from the datapath where necessary. Although the control logic is a finite state machine, and therefore in principle the design should start from a state transition diagram, in this case the FSM is trivial and the diagram not worth drawing. The implementation requires only two states, 'fetch' and 'execute', and one bit of state (Ex/ft) is therefore sufficient. Register transfer level design Control logic MU0 - a simple processor 11 The control logic can be presented in tabular form as shown in Table 1.2 on page 12. In this table an 'x' indicates a don't care condition. Once the ALU function select codes have been assigned the table may be implemented directly as a PLA (programmable logic array) or translated into combinatorial logic and implemented using standard gates. A quick scrutiny of Table 1.2 reveals a few easy simplifications. The program counter and instruction register clock enables (PCce and IRce) are always the same. This makes sense, since whenever a new instruction is being fetched the ALU is computing the next program counter value, and this should be latched too. Therefore these control signals may be merged into one. Similarly, whenever the accumulator is driving the data bus (ACCoe is high) the memory should perform a write operation (Rn W is low), so one of these signals c...
View Full Document

This document was uploaded on 10/30/2011 for the course CSE 378 380 at SUNY Buffalo.

Ask a homework question - tutors are online