This preview shows pages 1–3. Sign up to view the full content.

46. Since tan x has period p , ) tan ( x 1 p ) ) 5 ) tan x ) . This function has period p . A graph shows that no smaller number works for the period. [ 2 2 p ,2 p ] by [ 2 1, 5] 47. The period is } 2 6 p 0 } 5 } 3 p 0 } . One possible graph: 3 2} 6 p 0 } , } 6 p 0 } 4 by [ 2 2, 2] 48. The period is } 6 2 0 p p } 5 } 3 1 0 } . One possible graph: 3 2} 6 1 0 } , } 6 1 0 } 4 by [ 2 2, 2] Chapter 1 Review Exercises (pp. 52–53) 1. y 5 3( x 2 1) 1 ( 2 6) y 5 3 x 2 9 2. y 52 } 1 2 } ( x 1 1) 1 2 y 52 } 1 2 } x 1 } 3 2 } 3. x 5 0 4. m 5 } 1 2 2 2 ( 2 2 6 3) } 5 } 2 4 8 } 52 2 y 52 2( x 1 3) 1 6 y 52 2 x 5. y 5 2 6. m 5 } 2 5 2 2 2 3 3 } 5 } 2 2 5 } 52 } 2 5 } y 52 } 2 5 } ( x 2 3) 1 3 y 52 } 2 5 } 1 } 2 5 1 } 7. y 52 3 x 1 3 8. Since 2 x 2 y 52 2 is equivalent to y 5 2 x 1 2, the slope of the given line (and hence the slope of the desired line) is 2. y 5 2( x 2 3) 1 1 y 5 2 x 2 5 9. Since 4 x 1 3 y 5 12 is equivalent to y 52 } 4 3 } x 1 4, the slope of the given line (and hence the slope of the desired line) is 2 } 4 3 } . y 52 } 4 3 } ( x 2 4) 2 12 y 52 } 4 3 } x 2 } 2 3 0 } 10. Since 3 x 2 5 y 5 1 is equivalent to y 5 } 3 5 } x 2 } 1 5 } , the slope of the given line is } 3 5 } and the slope of the perpendicular line is 2 } 5 3 } . y 52 } 5 3 } ( x 1 2) 2 3 y 52 } 5 3 } x 2 } 1 3 9 } 11. Since } 1 2 } x 1 } 1 3 } y 5 1 is equivalent to y 52 } 3 2 } x 1 3, the slope of the given line is 2 } 3 2 } and the slope of the perpendicular line is } 2 3 } . y 5 } 2 3 } ( x 1 1) 1 2 y 5 } 2 3 } x 1 } 8 3 } 12. The line passes through (0, 2 5) and (3, 0) m 5 } 0 3 2 2 ( 2 0 5) } 5 } 5 3 } y 5 } 5 3 } x 2 5 13. m 5 } 2 2 2 2 ( 2 4 2) }5} 2 4 2 }52} 1 2 } f ( x ) 52 } 1 2 } ( x 1 2) 1 4 f ( x ) 52 } 1 2 } x 1 3 Check: f (4) 52 } 1 2 } (4) 1 3 5 1, as expected. 14. The line passes through (4, 2 2) and ( 2 3, 0). m 5 } 0 2 2 3 ( 2 2 2 4 ) } 5 } 2 2 7 } 52 } 2 7 } y 52 } 2 7 } ( x 2 4) 2 2 y 52 } 2 7 } x 2 } 6 7 } 15. [ 2 3, 3] by [ 2 2, 2] Symmetric about the origin. 16. [ 2 3, 3] by [ 2 2, 2] Symmetric about the y -axis. 36 Chapter 1 Review

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
17. [ 2 6, 6] by [ 2 4, 4] Neither 18. [ 2 1.5, 1.5] by [ 2 0.5, 1.5] Symmetric about the y -axis. 19. y ( 2 x ) 5 ( 2 x ) 2 1 1 5 x 2 1 1 5 y ( x ) Even 20. y ( 2 x ) 5 ( 2 x ) 5 2 ( 2 x ) 3 2 ( 2 x ) 52 x 5 1 x 3 1 x 52 y ( x ) Odd 21. y ( 2 x ) 5 1 2 cos( 2 x ) 5 1 2 cos x 5 y ( x ) Even 22. y ( 2 x ) 5 sec ( 2 x ) tan ( 2 x ) 5 } c s o in s 2 ( ( 2 2 x x ) ) }5} 2 co s s i 2 n x x } 52 sec x tan x 52 y ( x ) Odd 23. y ( 2 x ) 5 } ( 2 ( x 2 ) 3 x 2 ) 4 1 2( 2 1 x ) } 5 } 2 x x 4 3 1 1 1 2 x }52 } x x 3 4 2 1 2 1 x }52 y ( x ) Odd 24. y ( 2 x ) 5 1 2 sin ( 2 x ) 5 1 1 sin x Neither even nor odd 25. y ( 2 x ) 52 x 1 cos ( 2 x ) 52 x 1 cos x Neither even nor odd
This is the end of the preview. Sign up to access the rest of the document.