prelim2soln - ORIE 3500/5500, Fall 10 Prelim 2 Solution...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ORIE 3500/5500, Fall 10 Prelim 2 Solution Prelim 2 Solution Problem 1 (a) EX = Z 1 Z y- 1 x 2 3 dxdy =- 2 9 , EX 2 = Z 1 Z y- 1 x 2 2 3 dxdy = 5 18 , Var X = EX 2- ( EX ) 2 = 37 162 , EY = Z 1 Z y- 1 y 2 3 dxdy = 5 9 , EY 2 = Z 1 Z y- 1 y 2 2 3 dxdy = 7 18 , Var Y = EY 2- ( EY ) 2 = 13 162 . (b) E ( XY ) = Z 1 Z y- 1 xy 2 3 dxdy =- 1 12 , Cov( X,Y ) = E ( XY )- ( EX )( EY ) = 13 324 , X,Y = Cov( X,Y ) Var X Var Y = . 296 . (c) Var( aX + Y ) = a 2 Var X + 2 a Cov( X,Y ) + Var Y. This is a quadratic function of a with a positive leading coefficient, so its mini- mum is achieved at the point where the derivative vanishes. Taking a derivative and setting it equal to zero: 2 a Var X + 2Cov( X,Y ) = 0 gives a =- Cov( X,Y ) Var X =- 13 74 . Problem 2 (a) P ( X Y ) = P ( X = min( X,Y )) = X X + Y = 1 5 1 5 + 1 8 = 8 13 P ( X > Y ) = 1- 8 13 = 5 13 1 ORIE 3500/5500, Fall 10 Prelim 2 Solution E( I ) = 1 8 13 + 2 5 13 = 18 13 (b) Let Z = min( X,Y ) then Z...
View Full Document

Page1 / 3

prelim2soln - ORIE 3500/5500, Fall 10 Prelim 2 Solution...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online