prelim2soln

# prelim2soln - ORIE 3500/5500 Fall ’10 Prelim 2 Solution...

This preview shows pages 1–3. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ORIE 3500/5500, Fall ’10 Prelim 2 Solution Prelim 2 Solution Problem 1 (a) EX = Z 1 Z y- 1 x 2 3 dxdy =- 2 9 , EX 2 = Z 1 Z y- 1 x 2 2 3 dxdy = 5 18 , Var X = EX 2- ( EX ) 2 = 37 162 , EY = Z 1 Z y- 1 y 2 3 dxdy = 5 9 , EY 2 = Z 1 Z y- 1 y 2 2 3 dxdy = 7 18 , Var Y = EY 2- ( EY ) 2 = 13 162 . (b) E ( XY ) = Z 1 Z y- 1 xy 2 3 dxdy =- 1 12 , Cov( X,Y ) = E ( XY )- ( EX )( EY ) = 13 324 , ρ X,Y = Cov( X,Y ) √ Var X √ Var Y = . 296 . (c) Var( aX + Y ) = a 2 Var X + 2 a Cov( X,Y ) + Var Y. This is a quadratic function of a with a positive leading coefficient, so its mini- mum is achieved at the point where the derivative vanishes. Taking a derivative and setting it equal to zero: 2 a Var X + 2Cov( X,Y ) = 0 gives a =- Cov( X,Y ) Var X =- 13 74 . Problem 2 (a) P ( X ≤ Y ) = P ( X = min( X,Y )) = λ X λ X + λ Y = 1 5 1 5 + 1 8 = 8 13 P ( X > Y ) = 1- 8 13 = 5 13 1 ORIE 3500/5500, Fall ’10 Prelim 2 Solution ⇒ E( I ) = 1 · 8 13 + 2 · 5 13 = 18 13 (b) Let Z = min( X,Y ) then Z ∼...
View Full Document

{[ snackBarMessage ]}

### Page1 / 3

prelim2soln - ORIE 3500/5500 Fall ’10 Prelim 2 Solution...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online