# LISTA_05 - Lista 5 C´ alculo I-A 2007-1 9 Universidade...

This preview shows pages 1–2. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Lista 5 C´ alculo I -A- 2007-1 9 Universidade Federal Fluminense EGM - Instituto de Matem´atica GMA - Departamento de Matem´atica Aplicada LISTA 5 - 2007-1 Limite e continuidade: miscelˆanea Teorema do valor intemedi´ ario Nos exerc´ ıcios 1. a 15. calcule cada limite, quando poss´ ıvel. Caso conclua que o limite n˜ao existe, justifique. 1. lim x →-∞ ( x n- x n- 1 ) 2. lim x →-∞ x 3 √ 1- x 3 3. lim x → + ∞ p x + √ x √ x + 1 4. lim x → 1 3 x 3- 2 x 2- 3 x + 2 (2 x- 2) 2 5. lim x → (1 + x ) 5- (1 + 5 x ) x 5 + x 2 6. lim x → 1 2 2 √ 6 x- 3 √ 4 x 4 x 2- 4 x + 1 7. lim x → 1 x 100- 2 x + 1 x 50- 2 x + 1 8. lim x →- 2 3 √ x- 6 + 2 x 3 + 8 9. lim x → sen( x ) + sen(3 x ) + sen(5 x ) tan(2 x ) + tan(4 x ) + tan(6 x ) 10. lim x → ( x- sen( ax ))( x + tan( bx )) 1- cos( cx ) , a,b,c 6 = 0 11. lim x → 1- cos 3 x x sen x cos x 12. lim x → 1 sen( πx ) 1- x 2 13. lim x → π sen(tan x ) tan x 14. lim x → π 2 sen( x )- 1 x cos x 15. lim x → +...
View Full Document

## This note was uploaded on 10/30/2011 for the course ECON 101 taught by Professor Vários during the Spring '11 term at Universidade Federal do Rio de Janeiro.

### Page1 / 2

LISTA_05 - Lista 5 C´ alculo I-A 2007-1 9 Universidade...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online