LISTA_19 - CLC. APLIC.I-2008-LISTA 19-INT. DEFINIDA-CLCULO...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
CÁLC. APLIC.I-2008-LISTA 19-INT. DEFINIDA-CÁLCULO DE ÁREAS PLANAS 1) 1 2 x dx sugestão:x= ) sin( u -R: C x x + + 1 1 ln 2 1 ; 2) dx x x x + + 1 0 2 2 3 -R:-3ln(2)+2ln(3); 3) dy y y + 1 1 2 2 -R:4(ln(3)-1); 4) 6 2 2 dx x -R: 3 16 ; 5) + 3 0 3 25 x dx -R: 3 2 ; 6) + 1 0 8 3 1 dz z z -R: 16 π ; 7) 2 ) ln( e e x x dx -R:1; 8) + 1 0 2 1 dx e e x x -R: ) arctan( 4 e + ; 9) 4 0 2 ) ( cos dx x -R: 8 2 + ; 10) + 3 4 4 3 2 1 x dx sugestão:x= ) sinh( u -R: 2 3 ln ; 11) dx x dx + 4 0 1 sugestãox= 2 t -R:1,80277; 12) + 29 3 3 2 3 2 3 2) - (x 2) - (x dx -sugestão: 3 ) 2 ( t x = -R: 8 2 3 3 + ; 13) 2 ln 0 1 dx e x sugestão: 2 1 t e x = -R: 2 4 ; 14) + ) 5 ln( 0 3 1 dx e e e x x x -R: 4 ; 15) + 1 0 2 2 x x dx ;-R: ) 3 1 arcsin( 2
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
16) dx x 4 tan 0 3 π ;-R: 2 ) 2 ln( 1 17) 3 6 ) ( cot 4 dx x -R: 27 3 8 6 + 18) Demonstrar que se f(x) é uma função par então: = a a a dx x f dx x f 0 ) ( 2 ) ( 19) Demonstrar que dx x x dx x dx = 1 0 2 ) sin( ) arccos( 20) Demonstrar que = 2 0 )) (cos( 2 0 )) (sin( dx x f dx x f 21) Calcular a área da figura limitada por:
Background image of page 2
This is the end of the preview. Sign up to access the rest of the document.

Page1 / 2

LISTA_19 - CLC. APLIC.I-2008-LISTA 19-INT. DEFINIDA-CLCULO...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online