08_31ans - STAT 410 Examples for 08/31/2011 Fall 2011 Let X...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: STAT 410 Examples for 08/31/2011 Fall 2011 Let X and Y be two discrete random variables. The joint probability mass function p ( x , y ) is defined for each pair of numbers ( x , y ) by p ( x , y ) = P( X = x and Y = y ). Let A be any set consisting of pairs of ( x , y ) values. Then P ( ( X, Y ) A ) = ( ) ( ) y x A y x p , , . Let X and Y be two continuous random variables. Then f ( x , y ) is the joint probability density function for X and Y if for any two-dimensional set A P ( ( X, Y ) A ) = ( ) A dy dx y x f , . 1. Consider the following joint probability distribution p ( x , y ) of two random variables X and Y: x \ y 0 1 2 1 0.15 0.10 0 2 0.25 0.30 0.20 a) Find P ( X > Y ). P ( X > Y ) = p ( 1, 0 ) + p ( 2, 0 ) + p ( 2, 1 ) = 0.15 + 0.25 + 0.30 = 0.70 . b) Find P ( X + Y = 2 ). P ( X + Y = 2 ) = p ( 1, 1 ) + p ( 2, 0 ) = 0.10 + 0.25 = 0.35 . The marginal probability mass functions of X and of Y are given by p X ( x ) = ( ) y y x p all , , p Y ( y ) = ( ) x y x p all , . The marginal probability density functions of X and of Y are given by f X ( x ) = ( ) - , dy y x f , f Y ( y ) = ( ) - , dx y x f . c) Find the (marginal) probability distributions p X ( x ) of X and p Y ( y ) of Y. y p Y ( y ) x p X ( x ) 0 0.40 1 0.25 1 0.40 2 0.75 2 0.2 If p ( x , y ) is the joint probability mass function of ( X, Y ) OR f ( x , y ) is the joint probability density function of ( X, Y ), then discrete continuous E ( g ( X, Y ) ) = x y y x p y x g all all ) , ( ) , ( E ( g ( X, Y ) ) = - - dy dx y x f y x g ) , ( ) , ( d) Find E ( X ), E ( Y ), E ( X + Y ), E ( X Y ). E ( X ) = 1 0.25 + 2 0.75 = 1.75 . E ( Y ) = 0 0.40 + 1 0.40 + 2 0.20 = 0.8 . E ( X + Y ) = 1 0.15 + 2 0.25 + 2 0.10 + 3 0.30 + 3 0 + 4 0.20 = 2.55 ....
View Full Document

This note was uploaded on 10/31/2011 for the course MATH 464 taught by Professor Monrad during the Fall '08 term at University of Illinois, Urbana Champaign.

Page1 / 9

08_31ans - STAT 410 Examples for 08/31/2011 Fall 2011 Let X...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online