09_07ans - STAT 410 Examples for Fall 2011 2.4 Covariance...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon
STAT 410 Examples for 09/07/2011 Fall 2011 2.4 Covariance and Correlation Coefficient Covariance of X and Y σ XY = Cov ( X , Y ) = E [ ( X – μ X ) ( Y – μ Y ) ] = E ( X Y ) μ X μ Y (a) Cov ( X , X ) = Var ( X ) ; (b) Cov ( X , Y ) = Cov ( Y , X ) ; (c) Cov ( a X + b , Y ) = a Cov ( X , Y ) ; (d) Cov ( X + Y , W ) = Cov ( X , W ) + Cov ( Y , W ) . Cov ( a X + b Y , c X + d Y ) = a c Var ( X ) + ( a d + b c ) Cov ( X , Y ) + b d Var ( Y ) . Var ( a X + b Y ) = Cov ( a X + b Y , a X + b Y ) = a 2 Var ( X ) + 2 a b Cov ( X , Y ) + b 2 Var ( Y ) . 0. Find in terms of σ X 2 , σ Y 2 , and σ XY : a) Cov ( 2 X + 3 Y , X – 2 Y ), Cov ( 2 X + 3 Y , X – 2 Y ) = 2 Var ( X ) – Cov ( X , Y ) – 6 Var ( Y ). b) Var ( 2 X + 3 Y ), Var ( 2 X + 3 Y ) = Cov ( 2 X + 3 Y , 2 X + 3 Y ) = 4 Var ( X ) + 12 Cov ( X , Y ) + 9 Var ( Y ). c) Var ( X – 2 Y ). Var ( X – 2 Y ) = Cov ( X – 2 Y , X – 2 Y ) = Var ( X ) – 4 Cov ( X , Y ) + 4 Var ( Y ).
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Correlation coefficient of X and Y ρ
Background image of page 2
Image of page 3
This is the end of the preview. Sign up to access the rest of the document.

Page1 / 4

09_07ans - STAT 410 Examples for Fall 2011 2.4 Covariance...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online