{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

# 09_09 - STAT 410 Examples for Fall 2011 2.3 1 Conditional...

This preview shows pages 1–2. Sign up to view the full content.

Examples for 09/09/2011 Fall 2011 2.3 Conditional Distributions and Expectations. 1. Consider the following joint probability distribution p ( x , y ) of two random variables X and Y: y x 0 1 2 p X ( x ) 1 0.15 0.10 0 0.25 2 0.25 0.30 0.20 0.75 p Y ( y ) 0.40 0.40 0.20 a) Find the conditional probability distributions p X | Y ( x | y ) = ( ) ( ) y p y x p , Y of X given Y = y , conditional expectation E ( X | Y = y ) of X given Y = y , and E ( E ( X | Y ) ). x p X | Y ( x | 0 ) x p X | Y ( x | 1 ) x p X | Y ( x | 2 ) 1 0.15 / 0.40 = 0.375 1 0.10 / 0.40 = 0.25 1 0.00 / 0.20 = 0.00 2 0.25 / 0.40 = 0.625 2 0.30 / 0.40 = 0.75 2 0.20 / 0.20 = 1.00 E ( X | Y = 0 ) = E ( X | Y = 1 ) = E ( X | Y = 2 ) = Def E ( X | Y = y ) = x x P ( X = x | Y = y ) = x x p X | Y ( x | y ) discrete E ( X | Y = y ) = ( ) - dx y x f x | Y | X continuous Denote by E ( X | Y ) that function of the random variable Y whose value at Y = y is E ( X | Y = y ). Note that E ( X | Y ) is itself a random variable, it depends on the

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 6

09_09 - STAT 410 Examples for Fall 2011 2.3 1 Conditional...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online