10_14_1 - STAT 410 Examples for(1 Fall 2011 In general if X...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon
STAT 410 Examples for 10/14/2011 (1) Fall 2011 In general, if X 1 , X 2 , … , X n is a random sample of size n from a continuous distribution with cumulative distribution function F ( x ) and probability density function f ( x ), then F max X i ( x ) = P ( max X i x ) = P ( X 1 x , X 2 x , … , X n x ) = P ( X 1 x ) P ( X 2 x ) P ( X n x ) = ( ) ( ) n x F . f max X i ( x ) = F ' max X i ( x ) = ( ) ( ) ( ) 1 F x f x n n - . 1 – F min X i ( x ) = P ( min X i > x ) = P ( X 1 > x , X 2 > x , … , X n > x ) = P ( X 1 > x ) P ( X 2 > x ) P ( X n > x ) = ( ) ( ) n x F 1 - . F min X i ( x ) = ( ) ( ) n x F 1 1 - - . f min X i ( x ) = F ' min X i ( x ) = ( ) ( ) ( ) 1 F 1 x f x n n - - . Let Y k = k th smallest of X 1 , X 2 , … , X n . F Y k ( x ) = P ( Y k x ) = P ( k th smallest observation x ) = P ( at least k observations are x ) = ( ) ( ) ( ) ( ) = - - n k i i n i x x i n F 1 F . f Y k ( x ) = F ' Y k ( x ) = ( ) ( ) ( ) ( ) ( ) ( ) ( ) F 1 F 1 1 ! ! ! x f x x k n k n k n k - - - - - .
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
1. Let X 1 , X 2 , X 3 , X 4 be a random sample ( i.i.d. ) of size n = 4 from a probability distribution with the p.d.f. f ( x ) = 3 / x 4 , x > 1. Let Y k = k th smallest of X 1 , X 2 , … , X n . For x 1, F ( x ) = 0. For x > 1, F ( x ) = 3 1 3 1 4 1 1 1 3 x y dy y x x - = - = . a) Find P ( Y 4 < 1.75 ) = P ( max X i < 1.75 ). P ( max X i < 1.75 ) = P ( X 1 < 1.75, X 2 < 1.75, X 3 < 1.75, X 4 < 1.75 ) = F ( 1.75 ) 4 = ( 1 – 1 / 1.75 3 ) 4 0.4377643 . b) Find P ( Y 4 > 2 ) = P ( max X i > 2 ). P
Background image of page 2
Image of page 3
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

Page1 / 7

10_14_1 - STAT 410 Examples for(1 Fall 2011 In general if X...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online