{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Assignment 13-solutions

# Assignment 13-solutions - nanni(arn437 Assignment 13...

This preview shows pages 1–2. Sign up to view the full content.

nanni (arn437) – Assignment 13 – guntel – (54940) 1 This print-out should have 5 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering. 001 10.0points Evaluate the integral I = integraldisplay 1 / 2 0 sin - 1 x 1 - x 2 dx . 1. I = π 2 4 2. I = π 2 9 3. I = π 2 18 4. I = π 2 72 correct 5. I = π 2 8 Explanation: Set x = sin u . Then dx = cos u du, 1 - x 2 = cos 2 u , while x = 0 = u = 0 x = 1 2 = u = π 6 . In this case I = integraldisplay π 6 0 u cos u cos u du = integraldisplay π 6 0 u du . Consequently, I = bracketleftbigg u 2 2 bracketrightbigg π 6 0 = π 2 72 . 002 10.0points Determine the integral I = integraldisplay 1 ( x 2 + 4) 3 2 dx . 1. I = x 2 + 4 4 x + C 2. I = x x 2 + 4 + C 3. I = x 4 x 2 + 4 + C correct 4. I = 1 4 x 2 + 4 + C 5. I = x x 2 + 4 4 + C 6. I = x 2 + 4 x + C Explanation: Set x = 2 tan u. Then dx = 2 sec 2 u du , while ( x 2 + 4) 3 2 = ( 4(tan 2 u + 1) ) 3 2 = 8 sec 3 u . Thus I = integraldisplay 2 8 sec 2 u sec 3 u du = 1 4 integraldisplay cos u du , and so I = 1 4 sin u + C = 1 4 sin parenleftBig tan - 1 x 2 parenrightBig + C .

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}