{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Finding a value given a proportion

Finding a value given a proportion - E X A M P L E 3.9Find...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon
Finding a value given a proportion EXAMPLE 3.9 Find the top 10% using software Scores on the SAT reading test in recent years follow approximately the  (504,111)  distribution . How high must a student score in order to place in the top  10% of all students taking the SAT? We want to find the SAT score  x  with area 0.1 to its  right  under the Normal curve  with  mean   μ  = 504 and  standard deviation   σ  = 111. That’s the same as finding  the SAT score  x  with area 0.9 to its  left.   Figure       3.12      poses the question in  graphical form. Most software will tell you  x  when you plug in  mean  504,  standard deviation  111, and cumulative proportion 0.9. Here is Minitab’s output: Minitab gives  x  = 646.252. So scores above 647 are in the top 10%. (Round up  because SAT scores can only be whole numbers.)
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Figure       3.12  
Background image of page 2
Image of page 3
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

Page1 / 3

Finding a value given a proportion - E X A M P L E 3.9Find...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon bookmark
Ask a homework question - tutors are online