{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

ENB215-T1-S2-2007 - Student Number Surname Given Namels...

Info iconThis preview shows pages 1–20. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 6
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 8
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 10
Background image of page 11

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 12
Background image of page 13

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 14
Background image of page 15

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 16
Background image of page 17

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 18
Background image of page 19

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 20
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Student Number Surname Given Namels Examination Paper SEMESTER: SECOND SEMESTER EXAMINATIONS 2007 UNIT: ENBZiS FUNDAMENTALS OF MECHANICAL DESIGN - THEORY 1 DURATION OF EXAMINATION: PERUSAL: 15 MINUTES WORKING: 3 HOURS EXAMINATION MATERIAL SUPPLIED BY THE UNIVERSITY: EXAMINATION BOOKLETS TABLES - SIXTEEN (16) PAGES ATTACHED EXAMINATION MATERIAL SUPPLIED BY THE STUDENT: WRITING IMPLEMENTS CALCULATORS - ANY TYPE . COURSE NOTES AND TUTORIAL HANDOUTS BY AIP V.KOSSE WHICH ARE AVAILABLE FROM THE BLACKBOARD SITE FOR ENBZ15 UNIT ARE PERMITTED (THIS MATERIAL MAY BE ANNOTATED) INSTRUCTIONS TO STUDENTS: Students are prohibited from having mobile phones or any other device capabie of communicating information (either verbal or written) in their possession during the examination NOTES MAY BE MADE QNLI ON THE EXAMINATION PAPER DURING PERUSAL TIME ALL THREE (3) QUESTIONS ARE TO BE ATTEMPTED ALL ANSWERS MUST BE WRITTEN BY A BALL PEN (BLACK OR DARK BLUE COLOUR) ANSWERS WRITTEN IN PENCIL WILL NOT BE ACCEPTED AND WILL BE MARKED AS “ZERO” RESULT PENCIL CAN ONLY BE USED FOR SKETCHING AND DRAWING DIAGRAMS MARKS FOR EACH QUESTION ARE AS INDICATED Queensland University of Technology am Gardens Point at" Kelvin Grove GUT Carseidine QUESTION 1 Using TRIZ tools solve the following problem. Modern submarines are equipped with a range of weapons including torpedos. The torpedo carries the warhead, which could be high explosive or nuclear. To make torpedos effective they have to move through water at as high speed as possible. The speed is limited by the water resistance (drag). Engineers exhausted all possible design solutions to maximise the torpedo speed, which is still relatively low. Significant increase of the engine power does not give a notable increase of speed because the drag is proportional to the velocity squared. It looks like there is no way to significantly increase the speed of torpedos. This is not true. Recently in Russia a new type of torpedo was developed that can move through water at a speed of up to four to five times that of conventional torpedos. How is it possible? Using TRlZ tools come up with alternative concepts of now to increase the speed of torpedo by a factor of tour at least. Explain step~by—step how you develop the solutions. [20 marks] QUESTION 2 Carry out a functional analysis of a product. Carry out a functional analysis of the reconfigurable clamp shown in Fig. 1 below. It has two jaws — one fixed and another one movable. The release lever is used to undo the clamp or open it up. When the fixing clip is loosened one jaw can be detached and put at the opposite end of the rail. In this case the clamp can apply clamping force inside w cut. Stationary jaw Clamping outside-in Clamp with detached Jaw Fixing clip Clamping inside-out Fig. 1 Reconfigurable clamp EN13215T1.072 cont/... identify the basic and secondary functions (if any). identify components and their functions. Develop a functional tree up to the second level (or the third level if necessary). Assign significance (weight) to each function. Calculate general and partial coefficients of significance. Plot functional diagram sorting functions in descending order. [15 marks] QUESTION 3 Pinion-shaft assembly. A shafi; assembly is shown in Fig. 2 below. It transmits 2.1 kW of power at 960 r.p.rn. A pinion with 21 spur teeth has module 3mm. The shaft rests on two bearings. The radial force Fr lies in the horizontal plane and the tangential force Ft acts in the vertical plane. Torque T is transmitted from a free end of the shaft through a key joint between the shaft end and a coupling (not shown). Assume the endurance limit for the shaft material FR 2 360 MPa, and the safety factor S; = 2.4. Fig. 2 Shaft assembly For the given data determine the following: (a) Pitch circle diameter for the pinion, torque on the shaft, tangential and radial forces on the pinion. (4 marks) (b) Support reactions in the vertical and in the horizontal planes. (5 marks) (0) Plot shear force Vv and bending moment MV diagrams for the vertical plane. (8 marks) (d) Plot shear force Vh and bending moment Mh diagrams for the horizontal plane. (8 marks) (e) Plot twisting moment T diagram. (3 marks) (f) Determine equivalent bending moment M e at different sections of the shaft as M e : [(Mv) 2 + (M..) 2] (6 marks) (g) Identify the critical section on the shaft. (4 marks) ENBZ lSTl .072 Contl. .. (1‘!) Determine the shaft diameter D for the critical section and assume preliminary diameters for other shaft shoulders (make a sketch). (8 marks) Use the following formula: D3 Z (104'Sf/ FR)-Ks-K-Xi(Me 2 + T2) (mm3) Where FR is in MPa, MB and T in N-m. Assume the stress-raising factor K = 1.6, and the size factor KS 2 1.1 (j) Select bearings (use tables attached). Consider possible kinds of bearings that can be used and recommend the most suitable for this case. Assume the bearing life for 8-hour shift use in general industry. (7 marks) 0) Using the bearing dimensions finalise the shaft diameters and make a sketch giving diametral and linear dimensions. Remember to consult the metric table of preferred numbers. (6 marks) (k) Suggest suitable fit for the joint of the pinion with the shaft or the coupling with the shaft. Take values of deviations from tables provided and calculate clearances (interferences). Make a sketch of the fit showing tolerance zones and relevant parameters (dimensions, tolerances, deviations). (6 marks) [4+5+8+3+3+6+4+8+7+6+6=651 [Total = 20 +15 + 65 = 100] END OF PAPER ENB215T1.072 (0 Table 6 — Limit deviations for holes H Upper limit deviation = ES Lower limit deviation = EI Basic size Deviations um mm +0.8 + 1.2 + 2 + 3 + 4 + 6 + 10 + 14 + 25 + 40 + 60 +0.1 +0.14 +0.25 +0.4 + 0.6 0 0 0 D 0 0 0 0 0 (1 0 0 0 0 0 0 + 1 4 + 5 + 8 + 12 + 1H + 30 + + 75 +0.12 +0.18 +0.3 +0.43 + 0.75 + 1.2 + 1,3 (1 0 D 0 {J 0 0 0 G 0 u 0 0 0 0 + 4 + 6 + 9 + 15 + 22 + 36 + 58 + 90 +0.15 +0.22 +0.36 +0.55 + 0.9 + .2 0 0 0 0 0 0 0 0 U D 0 0 0 0 u 1.2 + 2 + 3 + 5 + 8 + 11 +18 + 27 + 43 + 10 + 1111 +0.18 +0.27 +0.43 +0.7 + 1.1 U o 0 0 0 0 0 0 0 D 0 0 0 U 0 O +1.5 + 2 4 + 6 + 9 + 13 + 21 + 33 + 52 + 84 + 130 +0.21 +0.33 +0.52 +0.34 + 1,3 0 0 0 D 0 0 0 0 0 0 0 0 0 0 0 + 39 +100 + 160 .25 +0.39 +0.62 +1 ' +1.6 + 2.5 0 1] n 0 0 0 0 0 0 0 + 19 + 30 + 46 + 74 +120 + 190 +0.3 +0.46 +0.74 +1.2 + 1.9 + 3 a a d o o u o o o o 0 u o + 22 + 35 + 54 + 87 +140 + 220 +0.35 +0.54 +0.8? +1.4 + 2.2 _ o 0 0 D 0 0 0 0 0 0 0 0 +18 + 25 + 40 + 63 +100 +160 + 250 +0.4 +0.63 +1 +1.6 4- 2.5 0 0 0 0 0 0 0 0 0 0 0 0 14 +20 + 29 + 46 + 72 +115 +155 + 290 +0.46 +0.72 +1.15 +1.55 + 2.9 O 0 0 0 0 0 0 0 0 0 0 0 0 +12 +16 +28 + 32 + 52 + 01 +130 +210 1- 320 +0.52 +0.81 +1.3 +2.1 + 3.2 0 0 0 0 0 0 0 0 0 0 0 0 0 8 +25 + 36 + 57 +140 +230 + 360 +0.57 +0.89 +1.4 +2.3 0 0 0 0 0 0 0 0 0 0 D 0 0 +15 +20 +2? + 40 + + 07 +155 +250 + 4130 +0.63 +0.97 +1.55 +2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + 2.32 + O.” .4 + + D m + or: 4. ON + as» 0'1 + + 09 as: m + + ops a}: d M I. + + opt Dy: ‘4 N + op: 01 + 03: + 0:» w +- =35» N! Table 22 — Limit deviations for shafts h Upper limit deviation = as Lower limit deviation = ea‘ Basic size Deviations um mm 31, a o o a o o —o.s ~ 10 ~ 14 — 25 —o.t4 —o,25 0 D D 0 D 0 D 0 0 O _ .5 — 12 ~30 —4s — 75 —o.12 "0.13 —o.a —o.ia -o.75 o o o o o n 0 v—D,58 2 3 0 _. | 3° . --.l N I ; Naive m «.n a” ... u I out: CE 3 o _| CD I I No ya 01 N 1 .'-‘ m I 5111: I'U OH —n w _. C11 20 1 c: .0" & I 3“ M N Ea 3 —l 5 ENB2 1.511 .072 (ii) Table 2.5 — Limit deviations for shafts m and n Upper limit deviation = as Lower limit deviation = 21' Deviations in micrometres Basic size Up to Above and in- cluding 5 + 6 + 3 +12 +16 +2'.' + 6 + 7 + 8 +10 +14 +15 +29 2 +2 +2 +2 +2 +2 +4 +4 +4 +4 +4 +4 +4 + 6,5 8 + 9 + 12 + 16 +22 +34 +1115 +12 +13 + 16 + 20 +26 +38 +4 4 +4 +4 +4 +4 +8 +8 +8 +8 +3 +8 +8 + 5.5 +10 +12 + 15 + 21 +28 +42 +12!) +14 +16 + 19 + 25 +32 +45 + S + 6 + 6 + E + 6 + 5 +10 +10 +10 +10 +10 +10 +10 + +50 +15 +17 +20 23 + 30 +39 +55 + 7 +12 +12 +12 12 + 12 +12 +12 18 +12 +14 +17 + 21 + 29 +60 +19 +21 +24 '+ 36 +48 + S + 8 + E + 8' + a + + 5 +15 +15 +15 1 + 15 +15 +15 + a ++ ~43 I L. um ++ ~45 ++ .. 55]“ ++ 4.15 + + + ++ a: +4- 1:105 +13 +16 +20 + 25 + 34 +43 +71 +21 +24 +28 + 33 + 42 +56 +9 +9 +9 + 9 + 9 +9 +9 +17 +17 +17 +17 + 17 +17 +17 +21; +3 + 39 + 50 +20 +20 + 20 + 20 + + 35’ Si Table 24 —- Limit deviations for shafts] and 1: Upper limit deviation = es Lower limit deviation = 21' Deviations in micrometres '4 .1 I+ mm + are U1 . +25 0 +6 +5 +13 +18 +30 +48 75 +120 +180 +1 +1 +1 0 0 11 u u l+ Nb l+ l+ 4.1m am + ON ++ ++ + HUI—lunch? + 0-5 + cm + 95 + .. DA + as .1. 138 + _. 1:18 + ._. 08 + 6 _ 2 0 + 7 +10 +2,5 + 7 + 10 + 16 + 22 + 36 + 53 + 911 + 150 + 220 — 2 - 5 0 + 1 + 1 + 1 0 0 D 0 0 0 + 8 +12 +3 + 6 + 9 + 12 + 19 + 27 + 43 + 70 + 110 + 180 + 270 — 3 — 6 0 + 1 +1 + 1 + 1 0 0 0 0 0 0 +9 +13 +4 +8 +11 +15 +23 +33 +52 +84 +130 +210 +330 — 4 —_ E! 0 + 2 + 2 + 2 + 2 D 0 0 0 0 0 +11 +15 + 9 +13 +18 + 2? + 39 + 62 +100 + 160 + 250 + 390 — 5 —-10 + 2 + 2 + 2 + 0 0 0 D 0 +12 +13 + 74 + 150 + 300 + 460 — 7 —12 n 11 o 0 +13 +20 + 87 + 220 + 3511 + 540 v 3 —15 0 0 0 0 D +14 +63 +100 +160 + 250 + 400 + an 11 0 0 O 0 0 0 85 + 290 + 460 + 720 0 0 0 0 +130 +210 + 320 + 520 + 810 0 U 0 D 0 +140 +230 + 360 + 570 + 090 U 0 0 0 0 4100 + 630 + 970 0 0 0 ENBZ l 5T1 .072 (iii) Table 8 — Limit deviations f0r holes J and K Upper limit deviation = ES Lower limit deviation : [5! Deviations in micrometres Basic size mm Up to Above and in- cluding E3 _. I + .- 2 4 5 3 5 4 6 5 8 5 D 6 +16 +18 — 7 —14 +22 — 7 25 + —? 120 | l+ a: 030) I+ i‘n’égti’ I + 315 Table 9 — Limit deviations for holes M and N Upper limit deviation = ES Lower limit deviation = E! Deviations in micrometres IE 0 0 D — 115 — 185 —BO 0 0 ENB215T1.072 (iv) Table 11 — Limit deviations for holes H =ES Upper limit deviation Lower limit deviation = EI —28 -30 ~34 ~36 mm mm mm mm mm mm am mm mm wm nm mm mm “mm _m _. __ _. w. ._ m. a. ._ m. __ __ _. __ mm um mm mm mm am am an am am aw mmmm mm mm mm mm —_ _h __ __ __ fl. __ __ h. __ __ __ —_ __ __ __ __ - 20 — 31 — 24 — 37 —104 as —117 a: —121 —10 —1e —16 —25 room. WE “mm “m mwfl mm “mm WWW... d___.__________.___ QM WE wfi Mum Hm "MM. H‘ __ ¢_ __ __ __ _ __ __ ._ 5 _ _ _ _ —14 ~19 —17 ~23 26 m m — 97 — 133 — 103 ~ 139 _ 125 — 109 — 132 — 152 u 172 —229 —10 —13 -1a.5 -17 s — 78 98 37 —110 91 —114 —101 —126 mm? 132 20 12 — 14 — 16,5 __ .9 9mm m mmwmmmsm 1% .m .mu 11111232 33 Smad cm .me Mm m mswmww m M 222233 4 ENBZISTLWLZ (V) we + Nu + 5:. m:+ mm + mm + mm + 8+ 8+ We... FnF+ 87+ mw+ 8+ Na + 8+ Nw+ mm + 5+ 8+ mm + mm + mm + $4. $+ «Imp... wow... mm + mh+ Nh+ om + om + 8 + 3+ 8+ NNH+ mm + mm. + 9?? $+ mv + 91. Q1. g + mm+ nm+ hm+ mm + ~m+ NM + Nm+ Nm+ + 3+ Q + av + 8: 8 + 5+ 05 amp 8 + R + B + a + H + um + mm + E. + E + E + mv mN + WWI? WW + 0N + 0N + wN+ @N-T ONL- mm? 3+ mm + E + we + um. 9+ 8+ N + N+ mm + N + N + w? N+ N+ 8: s..+ mm + 9 + mm + 5+ 8+ 8+ 3 + 2+ 2 + m: + m. + 9+ 9+ m: B + 5+ my + 8 + mm + 3+ N+ 5+ ~_. + m: w" + m_. + N" + m: 2+ 9+ 8 + 3+ 8 + N + om + t+ 9+ m.v_.+ m + w + m + o + m + w + m + w + 3+ 5+ on... 2+ 5+ 2+ m+ m+ EE an? 2me mvhmEome 5 3253mm .6 u co=m_>mn #E: 333 .8 H cow£>mu :E: Ban: n. mama—w .3 mafiamtfiu :E: .I ma 03m... NNI $7 87 RT mm I mm | Q? | El NONI Fmpl mm I B l cm! Nm II Nw I _..v I _.m I mml mum wwwl hmFl mm I ma. I NhI mm I mm I an I G I a] mmrI 9.: | vml ST 8? m. I E I mmI ¢N_.I 5 I mm .1 hvl marl mm. | E | Q I owl NM I NM 1 _.N I mm l hNI mNFI a I NV I hm I MMI Dml mfiml m cm I on I t I a I «NI mNI 37 0 EH ii «HI _.ml hnl VNI PNI mnl mwl mwl m1 NFI owl NWI oml ti Nwl N—I N_.l ml «in Ewan mmmmthzE E macaw.st hm H cowmmgu :E: 6.53 mm H cofismu xE: 6%: n. was: xx 32533 «ME: I 2 2an ENBZ 15T1.072 (Vi) MNNI $7 ET 87 mmI SI 8 I 8 I I 8 I 8: ET 8? $7 97 am I BI SI 8 I we I 8 I 8 I BI No: mwm ET RT 87 8 I mnI um I mm I mm I 8 I SI Em 0mm $7 NT 2 I RI on I on I 8 I SI emu cm? 37 87 mm I 8 I E: m. I m. I mv I Q. I m? ofl mhi VNI ml ml R m w—l VI fl FEE an? Emwm an? umnmm mumeEEE E 393st .6 H 5&5va :E: .633 mm coumSmU “E: .633 E H 5.556 tch 5.50.. m 3.3.? .3 mcozmtfiu :E3 | 5 05m... .8 n comeww :EM 5%: 3 tan v, mtmnm .8 9.253% :55 II on San... ENB215T1.072 Self-aligning ball bearings d 5—25 mm 8 r2 7 r r d d2 W Cylindrical bore Tapered bore taper 1:12 on diameter Principal Basic load ratings Fatigue Speed ratings Mass Designations ‘ dimensions dynamic static load Lubrication Bearings with limit grease oil cylindrical tapered d D B -G CO PIJ bore bore mm N N r/min kg — 5 19 6 2 510 480 25 32 000 38 000 0,009 135 — 1| 6 19 6 2 510 480 25 32 000 38 000 0,009 126 — 7 22 7 2 650 560 29 30 000 36 000 0.014 127 -— 8 22 7 2 650 560 29 30 000 36 000 0.014 108 m- g 9 26 8 3 900 815 43 26 000 32 000 0.022 129 ' — 10 30 9 5 530 1 180 61 24 000 30 000 0,034 1200 E — 30 14 8 060 1 730 90 22 000 26 000 0.047 2200 E v— 12 32 10 6 240 1 430 72 22 000 26 000 0,040 1201 E 32 14 8 520 1 900 98 20 000 26 000 0,053 2201 E — 37 12 9 360 2 160 112 18 000 22 000 0,067 1301 E — 37 17 11 700 2 700 140 17 000 20 000 0,095 2301 - 15 35 11 7 410 1 760 90 19 000 24 000 0.049 1202 E — 35 14 6 710 2 040 104 18 000 22 000 0.060 2202 E -— 42 13 10 600 2 600 134 17 000 20 000 0.094 1302 E — 42 17 11 900 2 900 150 15 000 1B 000 0.11 2302 —— 17 40 12 8 B40 2 200 114 18 000 22 000 0,073 1203 E Q 40 16 10 600 2 550 132 17 000 20 000 0.088 2203 E — 47 14 12 700 3 400 176 14 000 17 000 0.13 1303 E — 47 19 14 600 3 550 183 13 000 16 000 0,16 2303 — 20 47 14 12 700 3 400 176 15 000 1B 000 0,12 1204 E 1204 ER 47 18 16 800 4150 216 14 000 1 17000 0.14 2204E — 52 15 14 300 4 000 204 12 000 15 000 0.16 1304 E 1304 EK 52 21 18 200 4 750 240 11 000 14 000 0.21 2304 - 25 52 15 14 300 4 000 204 13 000 16 000 0,14 1205 E 1205 EK 52 18 16 600 4 400 228 11 000 14 000 0,16 2205 E 2205 EK 62 17 19 000 5 400 280 9 500 12 000 0.26 1305 E 1305 EK 62 24 24 200 6 550 340 9 500 12 000 0,34 2305 2305 K ENBZ 1 5T1 .072 Self-aligning ball bearings (viii) (1 30-55 mm B r 2 r1 '|:§:§ j . d d2 '_|::e::' ‘ . Cylindrical bore Tapered bore taper 1:12 on diameter Principal Basic load ratings Fatigue Speed ratings Mass Designations dimensions dynamic static Ioad Lubrication Bearings with - limit grease oil cylindrical tapered d D a” C CO Pu bore bore a l l mm N N r/min kg — E 30 62 15 15 600 4 650 240 10 000 13 000 0.22 1206 E 1206 EK 62 20 23 800 6 700 345 9 500 12 000 0,26 2206 E 2206 EK 72 19 22 500 6 900 355 9 000 11 000 0,39 1306 E 1306 EK 72 27 31 200 B 800 450 8 500 10 000 0.50 2306 2306 K 90 28 59 200 17 000 865 6 700 8 000 1.00 1406 — 35 72 17 19 000 6 000 305 9 000 11 000 0.32 1207 E 1207 EK 72 23 30 700 6 800 455 8 500 10 000 0.40 2207 E 2207 EK 80 21 26 500 B 500 430 7 500 9 000 0.51 1307 E 1307 EK 30 31 39 700 11 200 585 7 000 B 500 0,68 2307 E 2307 EK 100 30 62 400 18 000 930 6 300 7 500 1,30 1407 — 40 80 18 19 900 6 950 355 8 500 10 000 0.42 1208 E 1208 EK 80 23 31 900 10 000 510 7 500 9 000 0.51 2200 E 2208 EK -‘ 90 23 33 800 11 200 570 6 700 8 000 0,72 1308 E 1308 EK 90 33 54 000 16 000 815 6 300 7 500 0.93 2308 E 2308 EK 110 33 76 100 23 600 1 200 5 300 6 300 1.70 1400 — 45 85 19 22 900 7 800 400 7 500 9 000 0,47 1209 E 1209 EK 85 23 32 500 10 600 540 7 000 8 500 0,55 2209 E 2209 EK 100 25 39 000 13 400 695 6 300 7 500 0.96 1309 E 1309 EK 100 36 63 700 19 300 1 000 5 600 6 700 1,25 2309 E 2309 EK 120 35 88 400 27 500 1 400 5 000 6 000 2.15 1409 — 50 90 20 26 500 9 150 475 7 000 8 500 0,53 1210 E 1210 EKV 90 23 33 800 11 200 570 6 300 7 500 0,60 2210 E 2210 EK 110 27 43 600 14 000 720 5 600 6 700 1.20 1310 E 1310 EK 110 40 63 700 20 000 1 040 5 300 6 300 1.65 2310 2310 K 130 37 101 000 32 000 1 630 4 900 5 600 2,65 1410 — 3 . 55 100 21 27 600 10 600 540 6 300 7 500 0.71 1211 E 1211 EK' 100 25 39 000 13 400 695 6 000 7 000 0,81 2211 E 2211 EK‘ 120 29 50 700 16 000 915 5 000 6 000 1,60 1311 E 1311 EK 120 43 76 100 24 000 1 250 4 800 5 600 2.10 2311 2311 K 140 40 111 000 36 500 1 B60 4 300 5 000 3.25 1411 -~ ENBZISTL072 (ix) Cylindrical roller bearings single row d 15—20 mm I'1 W 1:.1 ‘§. ’///////////4 Eli! r3 4 m / m 12-2] / g 4 KW LI'J I l L-J W L'Ifl W \ Type NU Type NJ Type NUF‘ Type N Principal Basic load ratings Fatigue Speed ratings Mass Designation dimensions dynamic static load Lubrication ‘ limit grease oil i d D B _C co PU _ 3 . mm N N r/min kg ~ ' 15 35 11 12 500 10 200 1 220 13 000 22 000 0.047 NU 202 EC 35 11 12 500 10 200 1 220 15 000 22 000 0.049 NJ 202 EC 42 13 19 400 15 300 1 850 15 000 19 000 0.085 NU 302 EC - 42 13 19 400 15 300 1 850 15 000 19 000 0.088 NJ 302 EC ' ' 17 4o 12 17 200 14 300 1 730 16 000 19 000 0.068 NU 203 Ec 40 12 17 200 14 300 1 730 15 000 19 000 0,070 NJ 203 Ed 4‘! 40 12 17 200 14 300 1 730 15 000 19 000 0,073 NUP 203 EC 5.15; 40 12 17 200 14 300 1 730 15 000 19 000 0.055 N 203 EC 7 40 15 23 800 21 500 2 550 15 000 19 000 0.092 NU 2203 EC 1' 4O 15 23 800 21 500 2 550 16 000 19 000 0.095 NJ 2203 EC 40 15 23 500 21 500 2 550 15 000 19 000 0,097 NUP 2203 EC -' 47 14 24 600 20 400 2 550 14 000 17 000 0.12 NU 303 EC 47 14 24 500 20 400 2 550 14 000 17 000 0.12 NJ 303 EC "45? 47 14 ' 24 500 20 400 2 550 14 000 17 000 0.13 NUP 303 EC 47 14 24 600 20 400 2 550 14 000 17 000 0.12 N 303 EC - 20 47 14 25 100 22 000 2 750 13 000 16 000 0.11 NU 204 EC 47 14 25 100 22 000 2 750 13 000 15 000 0,11 NJ 204 EC 47 14 25 100 22 000 2 750 13 000 15 000 0.12 NUP 204 EC - 47 14 25 100 22 000 2 750 13 000 15 000 0.11 N 204 EC ‘ - 47 13 29 700 27 500 3 450 13 000 15 000 0.14 NU 2204 EC ‘ 47 18 29 700 27 500 3 450 13 000 15 000 0,14 NJ 2204 EC 52 15 30 800 26 000 3 250 12 000 15 000 0,15 NU 304 EC 52 15 30 800 25 000 3 250 12 000 15 000 0.15 NJ 304 EC 52 15 30 800 25 000 3 250 12 000 15 000 0,15 NUP 304 EC ‘_ 52 15 30 800 26 000 3 250 12 000 15 000 0.15 N 304 EC I: 52 21 41 300 35 000 4 800 11 000 14 000 0.21 NU 2304 EC “1 52 21 41 300 3B 000 4 300 11 000 14 000 0.22 NJ 2304 EC ' 52 21 41 300 38 000 4 300 11 000 14 000 0.22 NUP 2304 EC; EN13215T1,072 Cylindrical roller bearings single row d 25—30 mm r4 rli I .. r3 W l._-_" F W L-J W (X) .-j I: W Type NU Type NJ Type NUP Type N Principal Basic load ratings Fatigue Speed ratings Mass Designation dimensions dynamic static load Lubricalion limit grease oil d D B C Co Pu mm N N r/min kg — 25 47 12 14 200 13 200 1 400 15 000 18 000 0,084 NU 1005 52 15 28 600 27 000 3 350 11 000 14 000 0,13 NU 205 ECa 52 15 28 600 27 000 3 350 11 000 14 000 0,14 NJ 205 EC‘ 52 15 2B 600 27 000 3 350 11 000 14 000 0,14 NUP 205 EC 52 15 26 600 27 000 3 350 11 000 14 000 0,13 N 205_EC 52 18 34 100 34 000 4 250 11 000 14 000 0,16 NU 2205 EC 52 18 34 100 34 000 4 250 11 000 14 000 0,17 NJ 2205 EC 52 19 34 100 34 000 4 250 11 000 14 000 0,17 NUP 2205 EC 62 17 40 200 36 500 4 550 9 500 12 000 0,24 NU 305 EC 62 17 40 200 36 500 4 550 9 500 12 000 0,25 NJ 305 EC 62 17 40 200 36 500 4 550 9 500 12 000 0,25 NUP 305 EC 62 17 40 200 36 500 4 550 9 500 12 000 0.24 N 305 EC 62 24 56 100 55 000 6 950 9 000 11 000 0,35 NU 2305 EC 62 24 56 100 55 000 6 950 9 000 11 000 0,36 NJ 2305 EC 62 24 56 100 55 000 6 950 9 000 11 000 0,38 NUP 2305 EC 30 55 13 17 900 17 300 1 860 12 000 15 000 0,12 NU 1006 62 16 38 000 36 500 4 550 9 500 12 000 0.20 NU 206 EC 62 16 36 000 36 500 4 550 9 500 12 000 0,21 NJ 206 EC 62 16 36 000 36 500 4 550 9 500 12 000 0,22 NUP 206 EC 62 16 38 000 36 500 4 550 9 500 12 000 0.20 N 206 EC 62 20 48 400 49 000 5 100 9 500 12 000 0,26 NU 2206 EC 62 20 4B 400 49 000 6 100 9 500 12 000 0,27 NJ 2206 EC 62 20 46 400 49 000 6 100 9 500 - 12 000 0,27 NUP 2206 EC 62 20 4B 400 49 000 6 100 9 500 12 000 0.26 N 2206 EC 72 19 51 200 48 000 6 200 9 000 11 000 0.36 NU 306 EC 72 19 51 200 46 000 6 200 9 000 11 000 0,37 NJ 306 EC 72 19 51 200 4B 000 6 200 9 000 11 000 0,39 NUP 306 EC 72 19 51 200 4B 000 6 200 9 000 11 000 0,36 N 306 EC 72 27 73 700 75 000 9 650 6 000 9 500 0.53 NU 2306 EC 72 27 73 700 75 000 9 650 8 000 9 500 0,54 NJ 2306 EC 72 27 73 700 75 000 9 650 B 000 9 500 0,55 NUP 2306 EC EN [32 1 5T1 .072 Cylindri...
View Full Document

{[ snackBarMessage ]}