This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: 2 tan x + sec x1 dx 2) Z x ( x 4 + 1) 3 dx 3) Z 1 √ e x1 dx 4) Z x 2 + e x + ex dx 5) Z x 3 p 4 x 2x 4 dx Set NT 1 (40 points each): 92) Z √ 1x 2 1 + x 2 dx 93) Z 1 x 2 r x1 x + 1 dx 1 From the University of North Texas Integration Bee 92/93 2 List of primitives: Z x n dx = 1 n + 1 x n +1 + c ; n 6 =1 (1) Z 1 x dx = ln  x  + c (2) Z e x dx = e x + c (3) Z cos x dx = sin x + c (4) Z sin x dx =cos x + c (5) Z sec 2 x dx = tan x + c (6) Z csc 2 x dx =cot x + c (7) Z tan x sec x dx = sec x + c (8) Z cot x csc x dx =csc x + c (9) Z 1 √ 1x 2 dx = arcsin x + c 1 =arccos x + c 2 (10) Z 1 1 + x 2 dx = arctan x + c 1 =arccot x + c 2 (11) Z cosh x dx = sinh x + c (12) Z sinh x dx = cosh x + c (13) Z sec x dx = ln  sec x + tan x  + c (14) Z csc x dx = ln  csc xcot x  + c (15) 3...
View
Full Document
 Spring '08
 greenwood
 Calculus, Integrals, Sets, 2 sec, Inverse trigonometric functions, dx, University of North Texas Integration Bee

Click to edit the document details