Calculus Solutions 4

# Calculus Solutions 4 - Answers to Odd-Numbered Problems...

This preview shows page 1. Sign up to view the full content.

Answers to Odd-Numbered Problems Section 2.7 Continuous Functions (page 89) Ic=sinl;noc 3Anyc;c=O 5c=Oor 1;noc 7c=l;noc 9 no c; no c 11 c = 1. 64,'= 64 13c=-l;c=-1 15c=l;c=l 17c=-l;c=-1 19c=2,1,0,-1,~~~;samec 21f(x)=Oexceptatx=l 23dx 25-ff 27A 29One;two;two 31No;yes;no 33xf(x),(f(~))~,~,f(~),2(f(~)-~),f(~)+2+ 35F;F;F;T 37 Step; f (x) = sin \$ with f (0) = 0 39 Yes; no; no; yes (f4(0) = 1) 41 g(i) = f (1) - f (i) = f (0) - f = -g(O); zero is an intermediate value between g(0) and g(;) 43 f(x) -x is 2 0 at x=O and 50 at x= 1 CHAPTER 3 APPLICATIONS OF THE DERIVATIVE Section 3.1 Linear Approximation (page 95) IY=~ 3y =I+~(x-:) 5~=2~(~-24 726+6.25. .001 91 11 1 - I(-.02) = 1.02 13 Error .000301 vs. i (.0001)6 15 .0001- \$lo-' vs. i(.0001)(2) 17 Error .59 vs. ?(.01)(90) 19 = A 2- = aatx=O 21\$~~=rfi=&atu=0,c+~=c+\$ l+u 2SdV=3(10)~(.1) 25 A = 47rr2, dA = 87rr dr 27 V = 7rr2h, dV = 27rrh dr (plus 7rr2 dh) 29 1 + ix 31 32nd root Section 3.2 Maximum and Minimum Problems . (page 103) 1 x= -2: absmin 3x= -1: relmax, x=0: absmin,x=4: absmax 5 x = -1: abs max, x = 0,l: abs min, x = : re1 rnax 7 x = -3: abs min, x = 0: re1 max, x = 1: re1 min 9 x = 1,9
This is the end of the preview. Sign up to access the rest of the document.

## This document was uploaded on 11/02/2011 for the course MAC 2311 at University of Florida.

Ask a homework question - tutors are online