{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Demo_Ex_2_1_2_1_6

# Demo_Ex_2_1_2_1_6 - MATLABDemo: Stresses Example 2.1-2 1...

This preview shows pages 1–3. Sign up to view the full content.

MATLAB Demo: 2D ­ Stress transformation and determining Principle Stresses Example 2.1-2 ............................................................................................................................. 1 Finding the transformed State of Stress ...................................................................................... 1 Determining the Principal stresses and its directions ................................................................. 3 Clear the workspace clear all; clc; Example 2.1 ­ 2 Given original state of stresses Normal stress in x-dir (original co-ordinate) sigmax=3; Normal stress in y-dir (original co-ordinate) sigmay=9; Shear stress (original co-ordinate) tauxy=-4; Orientation at which stress to be calculated (counterclockwise positive) theta=-pi/4; Finding the transformed State of Stress Original Stress Tensor sigma=[sigmax tauxy; tauxy sigmay] sigma = 3 -4 -4 9 Transformation Matrix T=[cos(theta) sin(theta); -sin(theta) cos(theta)];

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Transformed Stress Tensor sigmap=T*sigma*T.' sigmap = 10.0000 -3.0000 -3.0000 2.0000 By varying theta we can also plot the variation in stresses for ii=1:201 thh(ii,1)=-pi+(0.01*(ii-1)*pi); th=thh(ii,1); T=[cos(th) sin(th); -sin(th) cos(th)]; % Transformation matrix Spr=T*sigma*T'; % Transformed State of Stress
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 3

Demo_Ex_2_1_2_1_6 - MATLABDemo: Stresses Example 2.1-2 1...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online