CHAPTER_ppt_12_2 - 12.2 Inverse Functions Martin-Gay,...

Info iconThis preview shows pages 1–5. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 12.2 Inverse Functions Martin-Gay, Beginning and Intermediate Algebra, 4ed 2 One-to-One Functions We have studied functions, which are defined to require that each element of the domain (input values) produce a unique element of the range (output values). 1-1 functions also require that each element of the range be produced from only one element of the domain. each x only one y : is a function each y only one x : is a 1-1 function Martin-Gay, Beginning and Intermediate Algebra, 4ed 3 Determine whether each function described is one to-one. r = {(1, 2), (3, 4), (5, 6), (6, 7)} It is 1-to-1, since the 2 nd coordinate is unique. g = {(0, 3), (3, 7), (6, 7), ( 2, 2)} It is not 1-to-1, since the second coordinate, 7, is produced from two different domain elements, both 3 and 6. One-to-One Functions Example: Martin-Gay, Beginning and Intermediate Algebra, 4ed 4 We found previously that the graph of a function must satisfy the Vertical Line Test....
View Full Document

Page1 / 14

CHAPTER_ppt_12_2 - 12.2 Inverse Functions Martin-Gay,...

This preview shows document pages 1 - 5. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online