This preview shows pages 1–6. Sign up to view the full content.
This preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: Review – Final (Part I)
3
4 ⎛ 81 ⎞ ⎛ 3 ⎞
Simplify: ⎜
4⎟ ⎜ 2⎟
⎝ 16 y ⎠ ⎝ y ⎠ 5 1 + x −1
2 x −2 −3 Write without absolute value signs:
π −2 + π −4 Simplify: Simplify: Solve: 5
4
5
−
=
2 x − 4 3x − 6 6 y7
64 x 3 1 2 Fred and Wilma start from the same point and travel on a
straight road. Fred travels at 30 mph, while Wilma travels
at 50 mph. If Wilma starts 3 hr after Fred, find the
distance they travel before Wilma catches up with Fred. Solve: 7 + x = x − 1 Solve in the complex number system:
x4 − x2 − 2 = 0 3 4 Solve: 4 x + 7 < 21 Solve: 4 x + 7 < −21 Solve: Find the general form of the equation of the circle with
center (−2,3) which passes through the point (1, −2) . x−2
<3
x+3 5 6 Find an equation of the line which is perpendicular to
1
1
x + y =1
2
6
and passing through the point (−3,4) . Find and simplify f ( x + h) − f ( x)
if f ( x ) = 4 x 2 − 1.
h If f ( x ) = 4 x 2 − 3 and g ( x ) = x + 1, find ( f g )( x ) and
its domain. 7 8 Determine whether the function has a maximum or
minimum value and find it:
f ( t ) = −2t 2 + 10t + 6 9 Find the asymptotes, intercepts, and holes of the graph of
x3 − 27
f ( x) = 2
, if any.
x −9 10 Given the graph of a polynomial: If f ( x ) = e x −2 + 3 is onetoone, find its inverse. Find an equation of the function which could possibly
have this graph. 11 12 ...
View
Full
Document
This note was uploaded on 11/07/2011 for the course MAC 1147 taught by Professor German during the Summer '08 term at University of Florida.
 Summer '08
 GERMAN
 Calculus

Click to edit the document details