# tables1 - Table 1 A Very Short Table of Transforms f(t F(ω...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Table 1: A Very Short Table of Transforms f (t ) F (ω) = F [ f (t )]|ω restrictions pulseα (t ) 2α sinc(2π αω) 0<α e−αt step(t ) 1 α + i 2π ω 0<α e−α |t | e−αt α2 2α + 4π 2 ω2 π π2 exp − ω2 α α 2 0<α 0<α Table 2: A Basic Table of Identities Near-equivalance: F −1 [φ(x )]| y = F [φ(−x )]| y = F [φ(x )]|− y and F [φ(x )]| y = F −1 [φ(−x )]| y = F −1 [φ(x )]|− y . In the following: α = any real number, F (ω) = F [ f (t )]|ω , and G (ω) = F [g (t )]|ω h (t ) H (ω) = F [h (t )]|ω restrictions ∞ f (t ) e−i 2π ωt dt f in A 1 ω F |α | α f (t ) α=0 −∞ f (α t ) f (t − α) e−i 2π αω F (ω) none e i 2 π α t f (t ) F (ω − α) none df dt i 2π ω F (ω) see chap. 22 t f (t ) i dF 2π d ω see chap. 22 ...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online