This preview shows page 1. Sign up to view the full content.
Unformatted text preview: and be so that + , # $ ± ²3 + , ” • 1. 2. is symmetric? is Hermitian (i.e., self adjoint)? E. Give an example of a antiHermitian matrix with no zero entries. # ‚ # F. Do NOT read §3.3 or §3.4 of A&W, but, starting on page 212, do 4, 5 and 6. G. Let and (assume the basis is orthonormal). Compute the l Ù œ l Ù œ + @ + @ + @ a v Ô × Ô × Õ Ø Õ Ø " " # # $ $ following (remember, scalars are complex) and, if possible, compare each with : Ø l Ù a v 1. 2. 3. trace Ø l Œ l Ù l Ù Œ Ø l Ø l Œ l Ù a v v a a v & ± Read § 4. and § 4.4 in the notes, doing any intext or inH. $ Elementary Matrix Theory lecture exercises. Also skim §3.1 of A&W. Starting on page 174 of A&W, do # 1 and 2 (rewrite the system in “matrix/vector form” first, and think about what the problem is really about). Then do #6b on page 188....
View
Full
Document
This note was uploaded on 11/07/2011 for the course MA 607 taught by Professor Staff during the Summer '11 term at University of Alabama in Huntsville.
 Summer '11
 Staff
 Math

Click to edit the document details