43638-TahaSMCh18 - Chapter 18 Classical Optimization Theory...

Info iconThis preview shows pages 1–12. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 6
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 8
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 10
Background image of page 11

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 12
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Chapter 18 Classical Optimization Theory 18-1 (Xuxl) 2(a)on (3") 6?" -.“3v ~3 6x1) awn): ('0, O): ' = r0) ~9) awe/M :éfl’ a) *5 WMét’f/FWW (X,,Kz)'=(t 1): “Z156, 27) => yam/{W ’=> (1,!) A; a min/mum (5) §}é=4xl+g+zxzxs:o 05‘ ,c. __ . %}L=V'7XL4642%X3 ‘ a (2) if. =2X3¢£+2XM1 1" (3) __ 2 (d) fcx; - (3X—2)(3X-3)1 . (3) -—(2)&4:(Ia’{v 03.5%,“),3- :(éxz—l3X—ré) 7” (X’- —- u 3 X:)(’ =0 7M: X3 = X1 (9’!— 19:! i. = a {(xi/3x+6)(/ZX—/3) = 0 F.“ ,(l 2/: .?X X = 2/3 3 2 /Z; '3/IL frwnfl), /o +2A’2x3zo (4). 5% -.; 2(2I6K1-463 X4224”) fmfiG); 1Xz+zx3+6=° ('5‘) 31 n . ’I/Wm) Xz:*(3+)( .WF . = ‘ . M: (4),%¢,~ 3) 7. . lo—2XC31X}:0 'Z‘Xzfi )g—I-Bxs—S—za x:13 ; 3 : '25 ==> W7 [2 ran 71m) X3 = /-2 a? X3.="¢-ZI X21442 a law-2 ' 61,) .- (1).. 9.2 ,I.2) (as) we: ={ U; I‘ZJ’V'Z') EX; =X3: Frm (2)) 1x3. + €+ ax’xz =0 . '_ -3 ’ (Prxl): X‘— continued... Few. mQ-éX,°-r3s~xf.= a ' ~ r " (Id-J“) :‘B/XL , M/hfm/Zc Z - 3 / 4"" " ..__ +_+ 2.. .. X3 7- -2 —0 at V 3 3X; 2X, ' 2 " _)_(:(/, ~41) 1.2): PM?” 09/10 j = (4, 4-2!!) —223)=7,~,749 " 2! = (A /'z;~4~?)= FMD: (4, ~62.56,-/$$.s)=>mdg(' X=(‘2-32//:63‘/~6$): 7/ I In 1 g, ’ .. r M = r r A (20A. » PMD:(4) 2.2314193," % ) [gm/9g) Male 4'“ ,C ‘4 + fin)(go+gé).bn ‘a g - _ : _ - _-2x2x3 4x3+1fig 9— ° Diff?gt,)=[g)=j’=[?glj=0 I I G 2X, — 342-3); +2 = 1» TWJ-s (x, , x2) .— (z, 4) ewe/('1, U d acmw M /'(;g,+/.)_/’%) ~ [MW] ram” (“DJ 32 [)2 (O) L"); J J 2 2.x - H: (“3 2 3 ZX’ (f) 2 2X ‘2 ‘2’)(2‘4 2X.—L a. 02f»; WI?“ f‘"’(y,)=>;1, 4o mxm; 11%;)“anqu 45' M F'”’ry.,) 7o. (:54 a 42ml.- 7P <0 n >o,»¢7awbv cm “W101 A<o m >'o,4¢c/aad1VV&/.VWJM PM!) = (2/ 0‘; '39?) r‘ndew at, , Igg-rAJ—l-Yy‘.) ($3.1); ,. rm“ “Wv Wjfifiwn) PM 9(0):”). (1’, 0, ‘32) ' .H (W)Wm WW flay)” PM9(Z,51)=”(ZI0' “35) . ’ . PM 30, 2,4) = (3’46 5’) [asst/7V2 defqm - PMD(2,3 -1) a (a, {5.32) ' " .— , <<0).77ww, y, n — g. 8—3” ' / SatJB-W F60 ; 2-f- : /6X{2X =0 0 a"? ‘ '. Gel/C3 :u0¢A3*3.72*A79/(48*fi5“2% Saddam? ” I V , ' (OWXO:(1:_—> xf=o . .I I. Z 1' 21 C . flJK'JJIZ):,,?Xl_—+X2+X3+ (“W-Kama :9 x*: .3535: i — @W xgz -10 :7 x = — - 35735; "is-450455;” 2:913:32; _ 1.99.1542, _ 3.642400 “0.436363 . 5.559445 ""1 4.450466 2.973232 1 .991 542 05342400 0.476383! 0.309003: ' 22109751009 1 477233033 09815904591 (=13?) (=5) 2; =‘2x3+2y,x7+g =0 %€:.4)g+é_éx3 +6 :0 313 : 2XIX3+ g r: a VF; :- (2x3,2) LXI) = (—19%) SIX/,2) ’ 4 213 3X1. 21, 2. (W? M 6 «Ma mm Max) 4X1+2¥2x3+g A: 2xa+2x,x3+(, 2X3‘1‘ZX/X2 +6 o—ZgiX:(0,0, 0) flfmagfrw. . 1 2x2 I ' 6 x .- {a,a)a)— ff 5) (a) 0 o L 6 = (—l-S, ~31 -3) A )3 2 4 ~6 a X -— -/-§ —3 -3 -6 Z ~3 '- ( I J ) *6 -3 2 q = (—2.65, - 4379,0379) A/e. mmfimé 2-23) ; x.oal (‘32-'50 .90'223 — -'.ac>2 SO KZBX:(I— .0028, 2+.aol, 3+._fo.z s) = (.44711, 2-00], 3.00.257) 7QX°+DX)= 57. 7:32 acf : 51r- s7~ 9537 = ~‘o4617 WMXMWWIW' {9%. _ I6-3/é 2X, Fm. : ~ 4Q, Mega/w— mum/an: “YE " (6) Ex, = 2.83 ax; (C) V7 75: (6X2, /0X,X3) w: (4*/+5‘X3’) 2Xz+2 )4) j: ( ax, 2X3 'X3 c2 ( ) avg—My; 1% X02 (’x Z; 3)» .; 6 I" 3 :76: (g) 26 a 6/ 3 4 ~qu ) (3) ‘ “3/34 W34 5 '_ continu.;. 1.8;; ~ W Se (6:) i, ” ' a,” @9313 3x; .. Vfl(¥)= 5X ) .’ U3 . ». = (:3 22' _V3(ZOJ:- sag-rm) = C": Wayne ” 38F“ ‘Z{(V5J33+'VZF(Y,OZ°)32 K/L- (:xz+/a)g)}(2;¢42xz)% X2, YZHV 9J1 (9,20) (4/? :4?) l =. :2 (xx-sxfi) =(32/s, -vs/s) I XI d ) . my a.) w/rss — m 7,3 3!: (3%- -7%) ( I3+q_2.aax, 7L: flfwfiiwyw‘ Mm c ) 33 ~ (9.1/5, 4.729), pans—4.729) f“? (95, "ajzhé-a/J m) fay, =41! -- " 5})(=~-£é_L-i§ +."125’:.472_ . 5 .r ‘ (a) thxrgxz) Z : (X3) XV) ; gr: my): (1' “ma-c4 ' .WeW (4,, waLaan /W M K V: (rum , 2:01,)«31 [7/(2) - (2x, ) 2X3) vyfi); (I i l- ‘ 2F: (2m,ax3)-{2;;,2xv)(j71% , a 3 V/(y‘j =(4J/2+rxp 20,9) I us” :. (7, 20) :- (ZXVXZ ’ 2X3+7X2”"‘XV) - continuggg V 1° continued...- 18-7 “gag 5'0 I @ €09nifciinu 3x3+7x2—qxq=o‘ _ (23 C55 X,+fl'xz+3X3—iryg—ig:o X, +fiXa—I-Sfx3 +51“?! firto ’CZ-W’V'Q; 2x,: {A ' -. 5X,+3X3+5‘Xy :10 cc » “W 52/ Yd: (— “9/79: 60/74) \7/0”) = (40/37! 60/37) ' a —I m a :'-“/7_ fimflwf: 137%)(3 3.) 9 5’ =(_ff_)gg) ‘ _.1 ' ~ ‘2. tour; mu; 3 --1 low}, low; ("l/S- 2/f~)=(‘g’ L?) 3/: JA. EMOQ‘W; 6X~X+qfl~4 a (7.x; continued... ' I ééntihflad LOG/U = X13» 5+ 9132+ XV? _ '3, (X; 'r WyBfi-H‘qué ' be): (XI‘I'ZJQ'i-g3 +61? wry) fl : - (Xl'fzyzf'Bxa +S‘J’y—Io) :a T f ~ (Xfizxz +s‘x3-I—éyq—Ir) =10 XI°= (-19.4, 4-5“gJ—/.W) 0 X; = (4.4} MM) .44) 11%; Xla , flaw @ A, = 385‘) x; : ~67.3 Fol xa", 7% (a am/@ 2’1: 2) 222': (A1”. a?) a (—14.4, 9L.ch -t. W, ms: 413) (4(5):) = (#4;~99,9Vq, “9.29.4.” [email protected] G goon?- - fi‘m MWMMJXQQ famed .mémfwrza mammamw. 6M9?” 2 3 (II) ) . gig-'30 M“, A ‘0 m)VF(X)—>Vg(x)=o E ' ' . ch”) = W“°Q/OO=0 adv/A” ” I £00 0 gm <0 (03 :gwfmw agooso ‘ XI+XEZ+X3=S ‘ Z ‘ W " “5*?L‘*Xz+xa£~2 (a u UK, >, , AA) = [00-1 (gays?) at so , ._x so p ‘)z(';(x)+ S2.) 3 72.1 /(’7—WW WM 1 083% [0!)— ‘A, (JG-r X23413 -§) W by, I “32(-S‘X,1+X:+Y3+ sin) . . ~33 (“x—+5“)- ) 20, A 2 ’ a { L 0 ® ')9(~X2+S.32) 3257740 44,1» Wow 0 3® - M («3+ 54’) -0 continued... '_ Setflfi‘Zfl * . ~= a 1 4 2 (b) -/(X):—x, aA/afyxszxg 515—.- '- 3 centimed s-contmgeg "40$ X , 3a, A's) =f'oo J, (-5; (x); sf) ' ' - 7): (god) 1 V ~23 (g (m 5:) /<~T’ W .' . a) 3" >0 I )2 unre/an‘afeofi )320 I I ~XI‘? — X22. 4 {:4—20 <0 I..@ 7n", )220 3 ‘ @474”5X2X32-Zfi~§1\7¥3r “XIX-2) " 2 -(AIJE) (/ ax; 3x3 ) ’3X,z —z)(2 ~7x3 (33 (A, 2)!) <Jq 2x221. X23~10 .2 O z 2 -’(I —- X2— ‘71:? +20 3 @ X(“’(12+ x? ’I‘Ioéo z . .493. X22. 4X3 + 30 E 0 W 14% >t- <o,gc.cx) MWG/ wed/val“; (madam —7IL‘Z.CX) Mazldww- 6mm for)» 6916”) 406)) Memmuc..~9/;~CX)»5 'WOWWV/L/‘W‘g‘h/flmfi-J @cmcgfiwz‘rdayumw w‘éfl cm fl mflflmzc 74X) 5'" (9,“).30 5L“) :0 3.36?) $0 continued .. ...
View Full Document

This note was uploaded on 11/06/2011 for the course ISE 421 taught by Professor Km during the Spring '11 term at King Fahd University of Petroleum & Minerals.

Page1 / 12

43638-TahaSMCh18 - Chapter 18 Classical Optimization Theory...

This preview shows document pages 1 - 12. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online