43632-TahaSMCh12 - CHAPTER 12 Review of Probability...

Info iconThis preview shows pages 1–14. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 6
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 8
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 10
Background image of page 11

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 12
Background image of page 13

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 14
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: CHAPTER 12 Review of Probability Theory *‘Pimmmmw‘flbfi: I f7znoqn§funq7'nffififlMA- fifE‘bM99 364 n * {52 z J5. Phueuk am'fw'yn «may nsflw My“; . V ’dOO I: I, 5-6—5: ,1 PXMwngjy 5*MdMfl40/m4/g}= 351:,“ . 3a 1006 , 66) fyg)VGH‘fi%19 filJlTx‘VWfifl?:}~= SEEZ£ : -£:7l I 000 (CJ/Disl'uMan—mjyj : 32/ 2,392, [flea '— A” $9ij W'Wofiwzzg T212 I E: du-l'mecf £5.51 .1;de OM“ Péab 1x F: ’7 I'll}! awe +055 777” (Var; H YTTH (Va)? ' HHTTTH ‘ c, THTT-TH “W (5)3«14: awn—(alga. HTHTTT/n‘ I 7 MN H 4x ~) (E8F)=(/a£‘lar3a-r5‘1) m” :THT;:H (L (3.8 L2 W‘W'fl) ”" HHH T-rru (SZCIWSw'5)) or (4 24:1 drldaréj) W (S‘zfl wsws])m—r '(é £[ZW4W6]) Pfapfz “gigging: 1/; (c) 344% = cola/W >3 (EzF)=(/&[4arcj)ar (£2 [3675]) W (33,52 arc/w 5] pin/Z.- Jt'm,Ja/m, w Ann wins} V=70+ §p+37+6f> =‘I I )m’ (C’- [lW3w53) I IL 4 PZEZFjr-2Ké(é+é}+1:X-é*€g‘+g+é):§. (4') PKZaNQSLCSmSZF = (2.xé.) = (e)(£3-F)= (3;. Ele wand-1 (4 3.1;!” Zor§J>m (Sgfitw2fl33)w - ____ __, (5 ADM 3177' 33) g; 3 P[€&F}= 4xé-(3L+2L+ZL = '3? (C) Firm («Imam aims} , wz4aws~svzg<é+é+i ’ .7 = 72 (5)1954 “fi- P{5‘9~5] +Fg‘gw] = 3X(Z‘~.x:'.) I (a) P{I&Q;+P{m§}+ pig/24h "P P11353+Plaz£3+P£32ég + P{4&|34P{S‘A13+P{égl} '4' P{S’¥23+?{6&L]+P{g53} = 1’22? Set 12.1c 7 . .. i I . _ (4)::33‘32304 cm) I . '0‘) Pg”; P{9»A§+ '9ng I3? fife—{p}: figfigflflgi’fé = 2/! = P8 DIAngA3+FgDIBi HF} NF] ‘ ‘7‘ (A) 5 z». (.3 a/ r), V =3 -IX.7S'+»2Kta3" F: ((flzn3n‘ln5') . ' —'= 42:3“ = I s. flzfl’a/r I PIE/E] 15% was $76 (J)"P{Amg= PéDIAE PUG ' v w Pm : .lxrir 3 {G '12:“ C: may... mm .65‘ 35' MC; Mme“, 7 C6)P[WMIW}:_‘+.ar-='6r +5 ce>PMWII>w3=-3§- = 4/7 P{<:"[+3= WC, 1*} (CJPXWMIMM/DM}: fig—:5 \ pm]: .4 fig}: .13” PJABMS 3 W“: P79”; + Pi”) ""3 (a) PUSIA} a, Fiffihg = 3/3 =7>{+[C§ PICNPMNCX PM} P R3 ' ' (sz’A/Bb-fiéféigfiid/r :‘W‘7”""‘3 ‘ H53 ‘25“ . ' =-6é , 5 3 1“;7Z’W) {C3 "’ ’ } pm . mam; Wei—raw? y PMS) 2 PM; M ‘ P{+‘r H" FEES Mama: mg as} , um; Mm = “‘27 m HMS «ma-haw- , 5: . 7545’ firms}: P{RB’3 [5 V ‘ NBS A 2 P‘fSlAE PM} PM} WM ’Pffi} >0. (a) 70(x)=éx, xz'l,a/.5;915' ' PgDrmamdzdf-égg‘c17WSJ-film £1000": k (1%z+3+9+r)=/§,é.—/ 771.444) ;é = 1/13”, M I Way=fir%x=bguyy CDF: x V IPXO/Z/IOQf-z/y PMS 1/”;- 2 /_ Hoa -7sv 5'01 =¢3‘ (if) Pz’ls s x515} = Pix s/rj— PIX s13} Set 12.3a X~zo, x251, :95;le fl lam) 0, leoJ Ii!) 10 I 30 - I ZV ‘/ aim} 3:09;. )+27x-zg)(,;j 3/” xaLl 2 (a) Pfsosx $70} a 2/-Pfsssx547} = ,_ /r _ a. M‘ 4:- 3 (é) nmk‘ 1‘ Z: CSB~X)/>(x)+ Z 0/900 #35 9 » X=r¢ s- 53 Z! :: 0 CK a “3:19 ) “3:24 fcx) := so lip--L - x4; 451553» 1-4;?) = .L. .— -.~ 45 (75‘0 £30) 167 (c) gar/mama??? .—; (5‘0~2-é7)xl — Sax-5’ = 36 $42.33 1 2-6 . ‘1’ V‘ar{x}='f?x;fix)}ax ' I ' ' I ' ' v. 2f:2,[cx)alx-Zflx5fxfmdx EX = . x (x .90 co .m I jiflaw 5+4 + (5 “91m” = 3%._ V v ‘ 5 Eixzfizfi‘zxgj- (ngsz I my} =)(Z$(x_é’—)17b(xl) , 1 {Xzf‘(5[x})z_ = (/_§)2(7§7)+-(2_}£)2(E)+ a=cx+d 2. (3" "’L " = f(cx+o4) [beng (Y-éLffl‘: = cijerx + differ)an 1/ M’fé- . ' I =CE{X}+0‘ x R z. 2. m 91,, 2 MW Maw—e M lo xi : Eejczzr’wdi an/X} , 2° 2 ($11K I )(20) .:-, Istag [email protected]éx} +4]: Io 2° 7. = C ZEZXZ} +0” +2cd 52x} Vwr {x} = 20 j (x’___’3‘f6)dx , -CZEzng 4/1- 2ch [x3 - ’0 Xe ‘ z 1. 20 .. ’- _ = 20 [x— 27.72,.flnx—fizm] “ C (62“, ‘5sz) T I” =_ C7” (/04 {X} = 7.5/ ’ (a) fight, 65:56 . x .. xL axiajfidx “2094) ’14 1,?— ~q2 ‘ L5H; , b l 7-(U‘“) 3 i z b -— X 4- a— 0” f(x— x) AX :‘L .3— —XX+XX] a 7:; b4 - a 2 Z : 452+4az+4a$ 31:10-01 z 12 a (lb-a) 4’2. 12.3:c’ (a) l 3 , I ' Z I :2 o 2_ P(J9,x;)=2[ o -.2 0- '3, o . -Z .5 2“ .Z V Pug) “4 '9’" _ XI '. l 2— 3 ' pm) “‘4 -1' -‘I . - X2. -| 2. V [90(2) A -2 -'f (‘9) W, 7005A) #PMJPOQ) (c) 5159+ij = FEM“ 55x13 :2 (Ix.q+.?X-Z+ 31W) = 4 ‘ (d) Cat/‘03) m 2 EM 1;) -Ea’,) are) X2)? IX-Zv‘XKO' +3X-Z+‘axo +4“ +£5th +341 + cxo +3X-2+ 6x0 f-qx.g : 4-5 EIL}: .? J ggxzjt a WCXIJXL); 4.;- zxz 2.5 (e) \fwy {$x,—— 4X2} = 25%»[4535szf Wnfi WM} = 6 ix,‘; - £2830? IX~¥+4X~Z+QX-Y—2L ‘ .z ‘8’ H megxpéx; 2 25‘ .3? +36 (-8) I ( D+2<s)(—e)<-é) a = AZ? m m WM- 2? ’ _ I SOCé-f— l0(g):0 ’ £4»??va 44:0 10%} I fig ’ " : c; (AW/2') = (’/2) Hag, W s— W} i, + yi'fiI-fw‘u} ; ; 77/3 Zn" fix/amt: ‘ I ' ' é: (bu/("42)! = 2 I I n-/ I > ' - . g :- 71/0 (IT—~42! 75177-13 mm}: Eye‘s-5%} Effie}: Zfiz afi‘k. ' E=I magmas? 3, i . 3,7,0 g; M,» ram ’0 I q “L l‘ ’g’“ (t‘DJM-AN cq (a) + (VI—[)1 n 1‘} I0 )0 o r 1: 37/9 fl") To __‘_> 6:0 I I ézo (n-K—m (7’ w --; m 1) I = n/a(n/9 1" Wiw WWW?) '“WY flaw-ci- Qamfamw ' - _ :6X%g%):—é- ‘ _ é : -0S'4l7 £5: ZJ‘ KS. I .214. 2/5, 2/; 2M. E”F¢WPW=-l(§% +ICE7A’; + 4 33+ 3&2) g"°5’=‘5’“’”‘5 -. fife" Set 12,4 PMle t: 5932:} x! Egg: Ex '00 x-I_ I. = >\+(/\+) A meL )fi!6 x 2:019 2'0” X: X! y:“).t VM {Kg :- E{X2$~ Pia or 1 MeUHi/C? ‘ ‘= dd(a;)°m)’”+ Cmcoo’ W)" 7 1 - : ~97 0+ onm/x-‘M = #757 )rcnf‘ lama; :./ X: I (X-Q .I = “— gem) (AUX X:g 3"! ~M 6' . 5“? = ) 2‘: “EM/WEN}? (WW) :5 = )t(At+/) X=o 1/04/fo 2 ()E)z+)f~()f)a =)(t i230 3;- S‘ M5 3,, g; 7 Wfaméd/MM; V :1 = 1.2 Mvmm/M - ' -/2 :1 ‘Péfit<.§; :— /~e, x“ ‘éd continuecL. - 12:11 ‘ = sza #072} ZDkariéc4¥1v71 é? 4K: guzé?{ng 5“ .. 436% _ SfMdMMaQa-zdm = {EX/5'2: SVS-SY X21000: _ Z‘laOa—4900 Pg 3 I Pt, < 3365’} = ,._ P{z.§ 52-95% meangx,—x2}= -‘l‘i-I = -—-o/ Sin/WM dwha’fim Z A042] ={~olz+-o!" = . 0,414 confinued". ‘12-1‘2 ' 34:2 1. [(53, Cl/zfimfkfi'leanl/ar. x/s . (74 «33 - , W my 11.. anyway—mm; {a 1 1:0 2 9 0. . 3 19 0.59583 4 17 0.57292 5 15 0.72917 6 9 0.62292 7 0.69563 3 5 0.94792 9 1 0.95833 10 0.95833 11 2 0.97917 12 “ 0.98958 13 14 96 duck-W 2 69 13.74353 3.531217 12.9751 1 2.797605 10.05485 4.797204 7.791835 6.668217 6.038151 1.452853 1. " 0.520614 2.177515 2.177515 0.057399 .11072353 23550.92... 1.013337 ' : 0.735258 ' 0.608531 0.572516 Adda—AM €M&mm'GN#UJEDO Freqnanny N91,.53 Bln Histogram 1.20000 0.00000 T397? 2 / 3'71 [Cl-fig." , 37: 99 $331,643 mam 7' .3 '92 r continugd... W 1 2-413 doWfl‘J-‘WfWJ‘AM/WW) 9.4:... aMdL 31497.21, 2" :ilmfiéz 2324 , 0.94792 Set 7-4-1) ‘11wa L. . Rwfiae/I 11.49992 5 * ' ' ' 0.10417 10.11549 1.374399 0.16667 3.904697 0.947507 0.19792 7.33633 2.986961 0.30208 6.900545 1.392154- 039533 6.07457 1.408847: 0.55208 5.347461 17.4235; 13.29319 0.57292 1.557114 ‘-.‘ 0.68750 , 11.34329. - 0.72917 . ' " v ' 0.79167 0.82292 0.63459 0.09563 0.92708 » . - I. 1: 1.92343 1.697306 0.053865: 0.163569 ‘ 1.315531 ~ 1.153066 1.019449 0.011725 0.05582“ 0.133375 ‘ 3.310103 3.310103 0.95833 0.95833 0.95833 0.95833 0.96375 0.97917 0.98958 1 .00000 1.315531 1.158066 1.019449 0.897424 0.790005 0.695443 5.1 14583 L Frequancy Histogram 1.20000 1 .00000- 0.80000 requency HIM Cumulative % 0 .60000 0.40000 0.20000 0 .00000 continued... ' 0% 05' I . . . . . 5 0.062606 _ 4.5 V 28 06' 14.16677. 10.41401 ~ 7 75- - I 6 13 0.32 9.666061 ‘ 1.133814 _ - r r ' ;-- _ » 2- ‘0‘ ‘ 5,1 - 7.5 ‘ 10 0.93 6.607598 1.741691 . 1 2‘0 3 0510030 9 ‘ v0.95 4.507544 0.504197 o ' ‘ 30 7. (124000 10.5 0.97 3.0749 ' 1.400148 1 40 11 [145900 12 '. ’ . 2. 97649 0.004546 1.06365 50 3 0.52000 . (13.5 1.430965 7 .I ‘ 60 5. 0.62000 0 02332:}; 70 5 0.72000 0 - ' so 7 006000 I 26-91567 90 4 0.94000 . , I ' ‘ , I _ 10 3 1.00000 _ Histogram . 1-20 Histogram I ’ ’ 1 1.00 0.80 12 1.20000 Frequency 0‘50 -~l—-Cumulaflva% r 10 1.00000 0-40 .‘ g 8 0.80000 , 0'2“ 5" 6 0.60000 requen'f‘y a - ml-Cumulat1ve % IE 4 0.40000 41 2 0.20000 0 0.00000 K“ (59 16° ’0 09 x \ Bin L‘ L = ’. L . ~ . /5_2)/Z"a_’l my- [6.7 Cont-£00m: £62170;— 'M' (5)51 - / 1 3m: : 99. 19-51637??? ' ’ 0.346061 :; 7 , , 40 11 0.45000 5.605381 5.191701 50 3 0.52000 5.605381 1.210981 7.227487 60 5 0.62000 5.605381 0.065331 70 5 0.72000 5.605381 0.065381 80 7 0.86000 5.605361 0.346981 90 5 0.94000 605361, 0.459781 0.202451 100 100000 0.035583 Histogram 1.20000 1.00000 0.00000 0.60000 0.40000 0.20000 XL 0.00000 Frequency -—I—~ Cumuiafive % ...
View Full Document

{[ snackBarMessage ]}

Page1 / 14

43632-TahaSMCh12 - CHAPTER 12 Review of Probability...

This preview shows document pages 1 - 14. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online