Urbancanopymodel-CocealBelcher04 - Q. J. R. Meteorol. Soc....

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Q. J. R. Meteorol. Soc. (2004), 130 , pp. 13491372 doi: 10.1256/qj.03.40 A canopy model of mean winds through urban areas By O. COCEAL * and S. E. BELCHER University of Reading, UK (Received 3 March 2003; revised 24 September 2003) SUMMARY An urban canopy model is developed for spatially averaged mean winds within and above urban areas. The urban roughness elements are represented as a canopy-element drag carefully formulated in terms of morphological parameters of the building arrays and a mean sectional drag coefficient for a single building. Turbulent stresses are represented using a mixing-length model, with a mixing length that depends upon the density of the canopy and distance from the ground, which captures processes known to occur in canopies. The urban canopy model is sufficiently simple that it can be implemented in numerical weather-prediction models. The urban canopy model compares well with wind tunnel measurements of the mean wind profile through a homogeneous canopy of cubical roughness elements and with measurements of the effective roughness length of cubical roughness elements. These comparisons give confidence that the basic approach of a canopy model can be extended from fine-scale vegetation canopies to the canopies of large-scale roughness elements that characterize urban areas. The urban canopy model is also used to investigate the adjustment to inhomogeneous canopies. The canonical case of adjustment of a rural boundary layer to a uniform urban canopy shows that the winds within the urban canopy adjust after a distance x = 3 L c ln K , where L c is the canopy drag length-scale, which characterizes the canopy-element drag, and ln K depends weakly on canopy parameters and varies between about 0.5 and 2. Thus the density and shape of buildings within a radius x only determine the local canopy winds. In this sense x gives a dynamical definition of the size of a neighbourhood. The urban canopy model compares well with observations of the deceleration of the wind associated with adjustment of a rural boundary layer to a canopy of cubical roughness elements, but only when the sectional drag coefficient is taken to be somewhat larger than expected. We attribute this discrepancy to displacement of streamlines around the large-scale urban roughness elements, which yields a stress that decelerates the wind. A challenge for future research is to incorporate this additional dispersive stress into the urban canopy model. KEYWORDS: Atmospheric boundary layer Urban canopy model Urban meteorology 1. INTRODUCTION Mixing and transport within urban areas is important for a number of applications. Urban areas exert enhanced drag on the boundary layer above, which may have an effect on mesoscale weather processes (e.g. Craig and Bornstein 2002). At the other end of the scale, local winds within urban areas form part of local weather forecasts and are required for building design applications (e.g. Panofsky and Dutton 1984). In addition,required for building design applications (e....
View Full Document

This note was uploaded on 11/07/2011 for the course EAS 8803 taught by Professor Staff during the Spring '08 term at Georgia Institute of Technology.

Page1 / 24

Urbancanopymodel-CocealBelcher04 - Q. J. R. Meteorol. Soc....

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online