t2_6243_2003

t2_6243_2003 - Massachusetts Institute of Technology...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.243j (Fall 2003): DYNAMICS OF NONLINEAR SYSTEMS by A. Megretski Take-Home Test 2 1 For each problem, give an answer and provide supporting arguments, not to exceed two pages per problem. Return your test paper by 11.05 am on Wednesday November 19, in the classroom. Remember that collaboration is not allowed on test assignments. Problem T2.1 System of ODE equations x ( t ) = Ax ( t ) + B ( Cx ( t ) + cos ( t )) , (1.1) where A, B, C are constant matrices such that CB = 0, and : R k R q is continuously differentiable, is known to have a locally asymptotically stable non-equilibrium periodic solution x = x ( t ). What can be said about trace( A ) ? In other words, find the set of all real numbers such that = trace( A ) for some A, B, C, such that (1.1) has a locally asymptotically stable non-equilibrium periodic solution x = x ( t )....
View Full Document

This note was uploaded on 11/07/2011 for the course AERO 16.36 taught by Professor Alexandremegretski during the Spring '09 term at MIT.

Page1 / 2

t2_6243_2003 - Massachusetts Institute of Technology...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online