{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

# newr - newr.m Analyze tracking algorithm by Park et al AIAA...

This preview shows pages 1–2. Sign up to view the full content.

% newr.m % Analyze tracking algorithm by Park et al % AIAA GNC 2004 % % Assumes that ac3.m has been run to generate syscl % Jonathan How % MIT 16.333 Fall 2004 % % close all dt=1; % time step for the simulation U0=235.9; path=[]; jcase=1; % 2 path cases considered if jcase==1 t=[0:5*dt:2500]'; omp=.0025; path=24000*[sin(omp*t) (1-cos(omp*t))]; xe=0;ye=1500; X=[.1 0 0 0*pi/180 0*pi/180 0 0 0]'; else t=[0:dt:1350]'; path(:,1)=U0*t; omp=.005; path(:,2)=500*(-cos(2*pi*omp*t)+1).*exp(.002*t); xe=0;ye=-1000; X=[.1 0 0 -15*pi/180 -15*pi/180 0 0 0]'; end % Discretize the dynamics with time step dt % system has the inner yaw and roll loops closed [A,B,C,D]=ssdata(syscl); syscld=c2d(ss(A,B,C,D),dt); [Ad,Bd,Cd,Dd]=ssdata(syscld); Bd=Bd(:,1);Dd=Dd(:,1); % only need first input % bank angle limit philim=30; % %inputs are phi_d and 0 %state x=[v p r phi Psi xx xx xx] L1=2000; % look ahead distance store=[]; % find the point on the path L1 ahead ii=find((xe-path(:,1)).^2+(ye-path(:,2)).^2 < L1^2); iii=max(ii);

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 2

newr - newr.m Analyze tracking algorithm by Park et al AIAA...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online