ft1ls07p_08

ft1ls07p_08 - MIT OpenCourseWare http://ocw.mit.edu 8.323...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: MIT OpenCourseWare http://ocw.mit.edu 8.323 Relativistic Quantum Field Theory I Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Alan Guth, 8.323 Lecture, May 13, 2008, p. 1. MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department ������ ����������� ������� ����� ������ � ������ ���� ����� �������� �������� ��� ��� ���� — ���� ���� ���� ���� ����� ������� ��������� �� �� ������� ������ ��� ��� ���� ������ ������� λφ4 �������������� ������������ ������ � � = 1 1 λ (∂µ φ)2 − m2 φ2 − φ4 . 2 2 4! Then H = H0 + Hint , where Hint = d3 x λ4 φ (x ) . 4! Goal: to perturbatively calculate matrix elements of the Heisenberg field φ(x , t) = eiH t φ(x , 0)e−iHt in the state |Ω , the true ground state of the interacting theory. –1– Alan Guth, 8.323 Lecture, May 13, 2008, p. 2. ������ ���� �� ����� Cho ose any reference time t0 , at which the interaction picture operators and Heisenberg operators will coincide. Define φI (x , t) ≡ eiH0 (t−t0 ) φ(x , t0 )e−iH0 (t−t0 ) . At t = t0 , can expand Heisenberg φ and π in creation and annihilation operators: φ(x , t0 ) = ˙ π (x , t0 ) = φ(x , t0 ) = d3 p ( 2π )2 1 ap eip ·x + a† e−ip ·x p 2E p d3 p ( 2π )2 . 1 −iEp ap eip ·x + iEp a† e−ip ·x p 2E p . † ap creates state of momentum p , but not energy Ep — not single particle. But [φ(x , t0 ) , π (y , t0 )] = iδ 3 (x − y ) =⇒ † ap , aq = (2π )3 δ (3) (p − q ) . –2– Can write φI (x , t) for all t: d3 p φI (x , t) = ( 2π )2 1 2E p ap e−ip·x + a† eip·x p x0 =t−t0 . How to express φ(x , t): φ(x , t) = eiH (t−t0 ) e−iH0 (t−t0 ) φI (x , t)eiH0 (t−t0 ) e−iH (t−t0 ) ≡ U † (t, t0 )φI (x , t)U (t, t0) , where U (t, t0 ) = eiH0 (t−t0 ) e−iH (t−t0 ) . Differential equation for U : ∂ i U (t, t0 ) = eiH0 (t−t0 ) (H − H0 )e−iH (t−t0 ) ∂t = eiH0 (t−t0 ) Hint e−iH (t−t0 ) = eiH0 (t−t0 ) Hint e−iH0 (t−t0 ) eiH0 (t−t0 ) e−iH (t−t0 ) = HI (t)U (t, t0 ) , where HI (t) = eiH0 (t−t0 ) Hint e−iH0 (t−t0 ) = d3 x λ4 φ (x , t) . 4! I –3– Alan Guth, 8.323 Lecture, May 13, 2008, p. 3. �������� �� ������������ ��������� ∂ U (t, t0 ) = HI (t)U (t, t0 ) ∂t implies the integral equation i t U (t, t0 ) = I − i t0 U (t0 , t0 ) = I with dt HI (t )U (t , t0 ) . To first order in HI , t U (t, t0 ) = I − i dt1 HI (t1 ) . t0 To second order in HI , t U (t, t0 ) = I − i t0 dt1 HI (t1 ) + (−i) t 2 t0 t1 dt1 t0 dt2 HI (t1 )HI (t2 ) . To third order, U (t, t0 ) = . . . + (−i) t 3 t0 t1 dt1 t0 t2 dt2 t0 dt3 HI (t1 )HI (t2 )HI (t3 ) . –4– Note that t1 ≥ t2 ≥ t3 . Can rewrite 3rd order term as U (t, t0 ) = . . . + (−i) = ...+ 3 t t0 (−i)3 3! dt1 t t0 t1 t0 dt1 t t0 dt2 dt2 t2 t0 t t0 dt3 HI (t1 )HI (t2 )HI (t3 ) dt3 T {HI (t1 )HI (t2 )HI (t3 )} , where T {} is time-ordered pro duct (earliest time to right). Finally, U (t, t0 ) = I + (−i) ≡T t t0 exp −i (−i)2 dt1 HI (t1 ) + 2! t t0 dt HI (t ) t t0 dt1 t t0 dt2 T {HI (t1 )HI (t2 )} + . . . . –5– Alan Guth, 8.323 Lecture, May 13, 2008, p. 4. Generalize to arbitrary t0 : U ( t2 , t1 ) ≡ T exp −i t2 t1 dt HI (t ) , where (for t1 < t0 < t2 ) U ( t 2 , t1 ) = T exp −i t2 t0 dt HI (t ) T exp −i t0 t1 dt HI (t ) = U (t2 , t0 )U −1 (t1 , t0 ) . Given have U (t, t0 ) = eiH0 (t−t0 ) e−iH (t−t0 ) , U (t2 , t1 ) = eiH0 (t2 −t0 ) e−iH (t2 −t0 ) eiH (t1 −t0 ) e−iH0 (t1 −t0 ) = eiH0 (t2 −t0 ) e−iH (t2 −t1 ) e−iH0 (t1 −t0 ) . –6– U ( t2 , t1 ) ≡ T exp −i t2 t1 dt HI (t ) . Properties: • U is unitary. • U (t3 , t2 )U (t2 , t1 ) = U (t3 , t1 ) . • U (t2 , t1 )−1 = U (t1 , t2 ) . –7– Alan Guth, 8.323 Lecture, May 13, 2008, p. 5. ������� ���� �� ���� ������ ����� |Ω � Assume that |0 has nonzero overlap with |Ω : e−iHT |0 = e−iEn T |n n |0 . n If T had large negative imaginary part, all other states would be suppressed relative to | Ω . |Ω = = lim e−iH (T +t0 ) |0 lim e−iH (T +t0 ) eiH0 (T +t0 ) |0 T →∞(1−i ) T →∞(1−i ) Recall e−iE0 (T +t0 ) Ω |0 −1 −1 e−iE0 (T +t0 ) Ω |0 . U (t2 , t1 ) = eiH0 (t2 −t0 ) e−iH (t2 −t1 ) e−iH0 (t1 −t0 ) , so |Ω = lim T →∞(1−i ) U (t0 , −T ) |0 e−iE0 (T +t0 ) Ω |0 −1 . –8– Similarly, Ω| = Recall lim T →∞(1−i ) e−iE0 (T −t0 ) Ω |0 −1 0| U (T, t0 ) . φ(x , x0 ) = U † (x0 , t0 )φI (x , x0 )U (x0 , t0 ) . So, for x0 > y 0 , Ω |φ(x)φ(y )| Ω = lim T →∞(1−i ) 0| U (T, t0 )U (t0 , x0 )φI (x , x0 )U (x0 , t0 ) × U (t0 , y 0 )φI (y , y 0 )U (y 0 , t0 )U (t0 , −T ) |0 × Normalization factor = lim T →∞(1−i ) 0| U (T, x0 )φI (x , x0 )U (x0 , y 0 ) × φI (y , y 0 )U (y 0 , −T ) |0 × Normalization factor . But Normalization factor = Ω |Ω −1 , –9– Alan Guth, 8.323 Lecture, May 13, 2008, p. 6. so 0T Ω |φ(x)φ(y )| Ω = φI (x)φI (y ) exp −i lim T →∞(1−i ) 0T exp −i T −T T −T dt HI (t) 0 . dt HI (t) 0 ���������� HI (t) = d3 x � (x , t) , so 0T Ω |φ(x)φ(y )| Ω = φI (x)φI (y ) exp −i 0T � exp −i dz 4 d4 z � � I (z ) I (z ) 0 . 0 � If z1 and z2 are spacelike-separated, their time ordering is frame-dependent. Need I (z1 ) , I (z2 ) = 0 to get same answer in all frames. –10– 0T Ω |φ(x)φ(y )| Ω = �������������� ������������ ������� φI (x)φI (y ) exp −i 0T exp −i dz 4 d4 z � � I (z ) I (z ) 0 . 0 –11– Alan Guth, 8.323 Lecture, May 13, 2008, p. 7. �� ��� ������� Gian-Carlo Wick October 15, 1909 – April 20, 1992 For more information see The National Academies Press Biographical Memoir http://www.nap.edu/readingroom.php?book=biomems&page=gwick.html –12– T {φ(x1 )φ(x2 ) . . . φ(xm )} = N {φ(x1 )φ(x2 ) . . . φ(xm )+ all possible contractions} . Example: Corollary: 0 |T {φ(x1 )φ(x2 ) . . . φ(xm )}| 0 = all possible FULL contractions} . Example: 0 |T {φ(x1 )φ(x2 )φ(x3 )φ(x4 )}| 0 = ∆F (x1 − x2 )∆F (x3 − x4 ) + ∆F (x1 − x3 )∆F (x2 − x4 ) + ∆F (x1 − x4 )∆F (x2 − x3 ) . –13– Alan Guth, 8.323 Lecture, May 13, 2008, p. 8. ������� �������� Example: 0 |T {φ(x1 )φ(x2 )φ(x3 )φ(x4 )}| 0 = ∆F (x1 − x2 )∆F (x3 − x4 ) + ∆F (x1 − x3 )∆F (x2 − x4 ) + ∆F (x1 − x4 )∆F (x2 − x3 ) . Feynman diagrams: [Note: the diagrams and some equations on this and the next 12 pages were taken from An Introduction to Quantum Field Theory, by Michael Peskin and Daniel Schroeder.] –14– ���������� �������� Ω |T {φ(x)φ(y )}| Ω = 0T � 0T φ(x)φ(y ) −i =3· −iλ 4! + 12 · I (z ) = φ(x)φ(y ) + φ(x)φ(y ) −i d4 z � DF (x − y ) −iλ 4! λ4 φ (z ) 4! I (z ) d4 z � I (z ) +... 0 0 d4 zDF (z − z )DF (z − z ) d4 zDF (x − z )DF (y − z )DF (z − z ) = –15– . Alan Guth, 8.323 Lecture, May 13, 2008, p. 9. ���� ���������� �������� How many identical contractions are there? Overall factor: 1 3! × 13 4! × 3! × 4 · 3 × 4! × 4 · 3 × 1 2 = 1 8 ≡ 1 symmetry factor . –16– �������� �� ����� –17– Alan Guth, 8.323 Lecture, May 13, 2008, p. 10. 0T φ(x)φ(y ) exp −i d4 z � I (z ) 0 λφ4 = ������ ������� ����� ��� sum of all possible diagrams with two external points Rules: –18– DF (x − y ) = Vertex: �������� ��� � ������� ������ d4 p i e−ip·(x−y) . 4 p2 − m2 + i (2π ) d4 z e−ip1 z e−ip2 z e−ip3 z e−ip4 z = (2π )4 δ (4) (p1 + p2 + p3 + p4 ) . –19– . Alan Guth, 8.323 Lecture, May 13, 2008, p. 11. –20– ��� ���� ��� �������� Consider Momentum conservation at one vertex implies conservation at the other. Graph is proportional to (2π )4 δ (4) (0) Use (2π )4 δ (4) (0) = (volume of space) × 2T . Disconnected diagrams: –21– Alan Guth, 8.323 Lecture, May 13, 2008, p. 12. Give each disconnected piece a name: Then Diagram = (value of connected piece) · i 1 (Vi )ni . ni ! So, the sum of all diagrams is: Factoring, –22– Factoring even more: –23– Alan Guth, 8.323 Lecture, May 13, 2008, p. 13. For our example, Now lo ok at denominator of matrix element: –24– Finally, Summarizing, Vacuum energy density: –25– Alan Guth, 8.323 Lecture, May 13, 2008, p. 14. Final sum for four-point function: –26– ������� �� �������������� ������������ ������ Example: The four-point function: –27– Alan Guth, 8.323 Lecture, May 13, 2008, p. 15. ���������� �� ����� �� ����� ����� �� ����� ��� �� �� ����� where ρA and ρB = number density of particles A = cross sectional area of beams A and B Then = lengths of particle packets σ≡ Number of scattering events of specified type . ρA A ρB B A Note that σ depends on frame. Special case: 1 particle in each beam, so ρA AA = 1 and ρB BA = 1. Then Number of events = σ/A . –28– Γ≡ ���������� �� �� �� ����� Number of decays per unit time . Number of particles present Number of surviving particles at time t: N (t) = N0 e−Γt . Mean lifetime: τ= 1 N0 Half-life: e−Γt = ∞ dt 0 1 2 =⇒ − dN dt t = 1/Γ . t1 / 2 = τ l n 2 . –29– Alan Guth, 8.323 Lecture, May 13, 2008, p. 16. �������� ����� ��� �� ������� �� ���������� Unstable particles are not eigenstates of H ; they are resonances in scattering experiments. In nonrelativistic quantum mechanics, the Breit-Wigner formula f (E ) ∝ 1 E − E0 + iΓ/2 =⇒ σ ∝ 1 . (E − E0 )2 + Γ2 /4 The “full width at half max” of the resonance = Γ. In the relativistic theory, the Breit-Wigner formula is replaced by a mo dified (Lorentz-invariant) propagator: p2 1 1 ≈ , 2 + imΓ 0 − E + i(m/E )Γ/2) −m 2E p ( p p p which can be seen using 2 (p0 )2 − |p |2 − m2 = (p0 )2 − Ep = p0 + Ep p0 − Ep ≈ 2Ep p0 − Ep . –30– ������� ��� ����� ������� ��� ��� ����������� ����� �� ����� ��� ��� �������� Recall our discussion of particle creation by an external source, ( + m2 )φ(x) = j (x) , where j was assumed to be nonzero only during a finite interval t1 < t < t2 . • In that case, the Fock space of the free theory for t < t1 defined the in-states, the Fock space of the free theory for t > t2 defined the out-states, and we could calculate exactly the relationship between the two. • We started in the in-vacuum and stayed there. The amplitude p 1 p 2 . . . p N , out |0, in was then interpreted as the amplitude for pro ducing a set of final particles with momenta p 1 . . . p N . –31– Alan Guth, 8.323 Lecture, May 13, 2008, p. 17. For interacting QFT’s, it is more complicated. The interactions do not turn off, and affect even the 1-particle states. It is still possible to define in- and out-states |p 1 . . . p N , in and |p 1 . . . p N , out with the following properties: • They are exact eigenstates of the full Hamiltonian. • At asymptotically early times, wavepackets constructed from |p 1 . . . p N , in evolve as free wavepackets. (The pieces of this ket that describe the scattering vanish in stationary phase approximation at early times.) These states are used to describe the initial state of the scattering. • At asymptotically late times, wavepackets constructed from |p 1 . . . p N , out evolve as free wavepackets. These states are used to describe the final state. –32– ������ ��� ������� One-particle incoming wave packet: |φ = d3 k ( 2π )3 1 φ(k ) k , in 2E k , φ |φ = 1 =⇒ d3 k φ(k ) ( 2π )3 =1. where 2 Two-particle initial state: φA φB , b , in = d3 kA d3 kB φA (k A ) φB (k B )e−ib ·k B k A k B , in (2π )3 (2π )3 (2EA )(2EB ) , where b is a vector which translates particle B orthogonal to the beam, so that we can construct collisions with different impact parameters. Multiparticle final state: φ1 . . . φn , out| = n f =1 d pf φf (p f ) p 1 . . . p n , out| . ( 2π )3 2E f 3 –33– Alan Guth, 8.323 Lecture, May 13, 2008, p. 18. ��� ��������� Definition: S |Ψ, out = |Ψ, in . Therefore Ψ, out |Ψ, in = Ψ, out |S | Ψ, out . But S maps a complete set of orthonormal states onto a complete set of orthonormal states, so S is unitary. Therefore Ψ, out |S | Ψ, out = Ψ, out S † S S Ψ, out = Ψ, in |S | Ψ, in , so P&S often do not label the states as in or out. –34– No scattering � S , T , and M =⇒ final = initial, so separate this part of S : S ≡ 1 + iT . But T must contain a momentum-conserving δ -function, so define p 1 . . . p n |iT | kA kB ≡ (2π )4 δ (4) kA + kB − pf · iM(kA kB → {pf }) . –35– Alan Guth, 8.323 Lecture, May 13, 2008, p. 19. ���������� �� ��� ����� �� ����� The probability of scattering into the specified final states is just the square of the S -matrix element, summed over the final states: � AB, b → p1 . . . pn = n d pf 1 ( 2π )3 2E f 3 f =1 p 1 . . . p n |S | φA φB , b 2 . To relate to the cross section, think of a single particle B scattering off of a particle A, with impact parameter vector b : Remembering that the cross section can be viewed as the cross sectional area blo cked off by the target particle, dσ = d2 b � . AB, b → p1 . . . pn –36– Substituting the expression for � and writing out the wavepacket integrals describing the initial state, n 3 d pf 1 d3 kB φA (k A ) φB (k B ) d3 kA dσ = d2 b ( 2π )3 2E f ( 2π )3 ( 2π )3 (2EA )(2EB ) f =1 ¯ d3 k A ( 2π )3 × ¯ ¯ ¯ d3 k B φ∗ (kA ) φ∗ (k B ) ib ·(kB −k B ) ¯ A B e 3 ¯ ¯ ( 2π ) (2E A )(2E B ) × p 1 . . . p n |S | k A k B ¯¯ p 1 . . . p n |S | k A k B ∗ . This can be simplified by using ¯ ¯ d2 b eib ·(kB −k B ) = (2π )2 δ (2) k ⊥ − k ⊥ B B , p 1 . . . p n |S | k A k B = iM k A k B → {p f } (2π )4 δ (4) kA + kB − ¯¯ p 1 . . . p n |S | k A k B ∗ ¯ ¯ ¯¯ = −iM∗ k A k B → {p f } (2π )4 δ (4) k A + k B − , pf pf –37– . Alan Guth, 8.323 Lecture, May 13, 2008, p. 20. ¯ ¯ ¯ We first integrate over k A and k B using δ (2) k ⊥ − k ⊥ and B B δ (4) ¯ ¯ kA + kB − pf =δ ¯ ¯ k ⊥ + k ⊥ − A B (2) p⊥ f ¯ ¯ × δ EA + EB − ¯ ¯z δ k + k z − A B Ef pz f , ⊥ ¯ ¯ where the beam is taken along the z -axis. After integrating over k and k ⊥ , we A B are left with z z ¯z ¯ ¯z ¯ z ¯z ¯ ¯ pz δ E A + E B − Ef = dk δ F ( ¯ ) , k dk dk δ k + k − A B A B f A A ¯z where the first δ -function was used to integrate k , and B ¯⊥ k A z F ( ¯ ) = k A Then 2 ¯z + k A 2 + m2 + z ¯z k dk δ F ( ¯ ) = A A 1 dF dk ¯z ¯ 2 + k⊥ B ¯z pz − k A f 2 + m2 − Ef . , evaluated where F ( ¯z ) = 0 . kA A –38– Rewriting z F ( ¯ ) = k A one finds ¯⊥ k A 2 ¯z + k A 2 + m2 + ¯ 2 + k⊥ B z dF k ¯ = ¯A − dk E ¯z A A ¯z pz − k A f z ¯ pf − k z A ¯ E B 2 + m2 − Ef , z ¯ ¯z Remembering the δ -function constraint δ k + k − pz from the previous A B f slide, one has ¯z ¯ dF k kz = ¯A − ¯B = |v z − v z | . ¯A ¯B dk E ¯z E B A A ¯z What values of k satisfy the constraint F ( ¯z ) = 0? There are two solutions, since kA A z ¯ ) = 0 can be manipulated into a simple quadratic equation. (To see this, move F (k A ¯ one square ro ot to the RHS of the equation and square both sides. The (k ) term z 2 A on each side cancels, leaving only linear terms and a square root on the LHS. Isolate the square ro ot and square both sides again, obtaining a quadratic equation.) One ¯ solution gives k A = k A , and the other corresponds to A and B approaching each other from opposite directions. Assume that the initial wavepacket is too narrow to overlap the 2nd solution. –39– Alan Guth, 8.323 Lecture, May 13, 2008, p. 21. Then dσ = n d pf 1 ( 2π )3 2E f 3 f =1 d3 kA ( 2π )3 × M k A k B → {p f } 2 d3 kB |φA (k A )|2 |φB (k B )|2 z z (2π )3 (2EA )(2EB ) |vA − vB | (2π )4 δ (4) kA + kB − pf . Define the relativistically invariant n-bo dy phase space measure dΠn (P ) ≡ n f =1 d pf 1 (2π )4 δ (4) P − 3 2E ( 2π ) f 3 pf , 2 z z and assume that EA (k A ), EB (k B ), |vA − vB |, M k A k B → {p f } , and dΠn (kA + kB ) are all sufficiently slowly varying that they can be evaluated at the central momenta of the two intial wavepackets, k A = p A and k B = p B . Then the normalization of the wavepackets implies that d3 kA ( 2π )3 d3 kB |φA (k A )|2 |φB (k B )|2 = 1 , 3 ( 2π ) –40– so finally 2 |M (p A p B → {p f })| dσ = z z dΠn (pA + pB ) . (2EA )(2EB ) |vA − vB | This formula holds whether the final state particles are distinguishable or not. In calculating a total cross section, however, one must not double-count final states. If the final state contains n identical particles, one must either restrict the integration or divide the answer by n!. –41– Alan Guth, 8.323 Lecture, May 13, 2008, p. 22. ��� ��� ����� ��������� �� ����� ������ In the center of mass (CM) frame, p A = −p B and Ecm = EA + EB , so dΠ2 (pA + pB ) = 2 f =1 d pf 1 (2π )4 δ (4) pA + pB − (2π )3 2Ef 3 pf = 1 d3 p1 d3 p2 (2π )4 δ (4) (pA + pB − p1 − p2 ) (2π )3 (2π )3 (2E1 )(2E2 ) = 1 d3 p1 (2π )δ (Ecm − E1 − E2 ) 3 (2E )(2E ) (2π ) 1 2 = dΩ 1 p2 dp1 1 (2π )δ Ecm − 3 (2E )(2E ) ( 2π ) 1 2 p1 1 p1 p2 + = dΩ 1 2 (2π ) (2E1 )(2E2 ) E1 E2 p1 = dΩ . 16π 2 Ecm p2 + m2 − 1 1 p2 + m2 1 2 −1 –42– The two-particle final state, center-of-mass cross section is then dσ dΩ 2 = cm |p A | |M (p A p B → p 1 p 2 )| z z. 64π 2 EA EB (EA + EB ) |vA − vB | If all four masses are equal, then EA = EB = and z z |vA − vB | = 1 Ecm 2 2 |p A | 4 |p A | = , EA Ecm so dσ dΩ = cm |M|2 2 64π 2 Ecm (all masses equal) . –43– Alan Guth, 8.323 Lecture, May 13, 2008, p. 23. ���������� �� ��� �� �� ����� The formula for decay rates is more difficult to justify, since decaying particles have to be viewed as resonances in a scattering experiment. For now we just state the result. By analogy with the formula for cross sections, 2 |M (p A p B → {p f })| dσ = z z dΠn (pA + pB ) , (2EA )(2EB ) |vA − vB | we write 2 |M (p A → {p f })| dΓ = dΠn (pA ) . 2E A Here M cannot be defined in terms of an S -matrix, since decaying particles cannot be described by wavepackets constructed in the asymptotic past. M can be calculated, however, by the Feynman rules that Peskin & Schroeder describe in Section 4.6. If some or all of the final state particles are identical, then the same comments that were made about cross sections apply here. –44– ������� �� ��� ������� �� ��� Time-dependent p erturbation theory: Ω |T {φ(x1 ) . . . φ(xn )}| Ω = 0T φI (x1 ) . . . φI (xn ) exp −i d4 z � I (z ) 0 connected = Sum of all connected diagrams with external points x1 . . . xn . Status: derivation was more or less rigorous, except for ignoring problems connected with renormalization: evaluation of integrals in this expression will lead to divergences. These questions will be dealt with next term. If the theory is regulated, for example by defining it on a lattice of finite size, the formula above would be exactly true for the regulated theory. One finds, however, that the limit as the lattice spacing goes to zero cannot be taken unless the parameters m, λ, etc., are allowed to vary as the limit is taken, and in addition the field operators must be rescaled. –45– Alan Guth, 8.323 Lecture, May 13, 2008, p. 24. Cross sections from S -matrix elements: S = 1 + iT , where p 1 . . . p n |iT | kA kB ≡ (2π )4 δ (4) kA + kB − pf · iM(kA kB → {pf }) . The relativistically invariant n-bo dy phase space measure is n 3 d pf 1 (2π )4 δ (4) P − dΠn (P ) ≡ 3 2E (2π ) f pf , f =1 and the differential cross section is dσ = 2 |M (p A p B → {p f })| z z dΠn (pA + pB ) . (2EA )(2EB ) |vA − vB | Status: this derivation was more or less rigorous, making mild assumptions about in- and out-states. These assumptions, and the formula above, will need to be mo dified slightly when massless particles are present, since the resulting longrange forces mo dify particle trajectories even in the asymptotic past. These mo difications arise only in higher order perturbation theory, and are part of the renormalization issue. –46– Special case— two-particle final states, in the center-of-mass frame: dσ dΩ 2 cm |p A | |M (p A p B → p 1 p 2 )| = z z 64π 2 EA EB (EA + EB ) |vA − vB | = |M|2 2 64π 2 Ecm (if all masses are equal) . Decay rate from S -matrix elements: 2 dΓ = |M (p A → {p f })| dΠn (pA ) . 2E A Status: completely nonrigorous at this point. Unstable particles should be treated as resonances, an issue which is discussed in Peskin & Schroeder in Chapter 7. –47– Alan Guth, 8.323 Lecture, May 13, 2008, p. 25. ���� ������� �������� ��������� ��� �������� Complication: p 1 . . . p n |S | p A p B ≡ p 1 . . . p n , out |p A p B , in , but the in- and out-states are hard to construct: even single-particle states are mo dified by interactions. The solution will make use of the fact that Ω |φ(x)| p = Ω eiP ·x φ(0)e−iP ·x p = e−ip·x Ω |φ(0)| p is an exact expression for the interacting fields, with the full operator P µ and the exact eigenstate |p . By generalizing this to in- and out-states, it will be possible to manipulate the correlation functions Ω |T (φ1 . . . φn )| Ω by inserting complete sets of in- and out-states at various places. When the correlation function is Fourier-transformed in its variables x1 . . . xn to produce a function of p1 . . . pn , one can show that it contains poles when any pi is on its mass shell, p2 = m2 , and i i that the residue when all the pi are on mass shell is the S -matrix element. –48– A derivation will be given in Chapter 7, but for now we accept the intuitive notion that U (t2 , t1 ) describes time evolution in the interaction picture, and that the S -matrix describes time evolution from minus infinity to infinity. So we write p 1 . . . p n |S | p A p B = I p1 . . . pn T exp −i d4 x � I (x) p Ap B I connected, amputated , where “connected” means that the disconnected diagrams will cancel out as before, and the meaning of “amputated” will be discussed below. It will be shown in Chapter 7 that this formula is valid, up to an overall multiplicative factor that arises only in higher-order perturbation theory, and is asso ciated with the rescaling of field operators required by renormalization. –49– Alan Guth, 8.323 Lecture, May 13, 2008, p. 26. 2 → 2 � ��������� ��� ������� �� Normalization conventions: 2Ep a† (p ) |0 , |p = To zeroth order in � a(q ) , a† p = (2π )3 δ (3) (q − p ) . I, p 1 p 2 |S | p A p B = I p 1 p 2 |p A p B = I (2E1 )(2E2 )(2EA)(2EB ) 0 a1 a2 a† a† 0 AB = (2EA )(2EB )(2π )6 δ (3) (p A − p 1 )δ (3) (p B − p 2 ) + δ (3) (p A − p 2 )δ (3) (p B − p 1 ) . Graphically, Contributes only to “1” of S = 1 + iT . To first order in I � p 1p 2 T = I –50– I: −i λ 4! p 1p 2 N d4 x φ4 (x) I −i λ 4! where contractions = −i p Ap B I d4 x φ4 (x) + contractions I λ 6 4! φ(x)φ(x) + 3 p Ap B I , . Uncontracted fields can destroy particles in initial state or create them in the final state: φI (x) = φ+ (x) + φ− (x) = I I d3 k ( 2π )3 so φ+ (x) |p I I 1 aI (k )e−ik·x + a† (k )eik·x I 2E k = e−ip·x |0 I , , where φ+ and φ− refer to the parts of φI (x) containing annihilation and creation I I operators, respectively. –51– Alan Guth, 8.323 Lecture, May 13, 2008, p. 27. This leads to a new type of contraction: We show this kind of contraction in a Feynman diagram as an external line. Lo oking at the contracted terms from the Wick expansion, the fully contracted term pro duces a multiple of the identity matrix element, −i λ 4! d4 xI p 1p 2 p Ap B I = −i λ 4! d4 x × I p 1 p 2 |p A p B I , so this term also contributes only to the uninteresting 1 part of S = 1 + iT . –52– The singly contracted term −i 6λ 4! d4 xI p 1p 2 φ(x)φ(x) p A p B I contains terms where one φ(x) contracts with an incoming particle and the other contracts with an outgoing particle, giving the Feynman diagrams The integration over x gives an energy-momentum conserving δ -function, and the uncontracted inner product produces another, so these diagrams are again a contribution to the 1 of S = 1 + iT . The contributions to T come from fully connected diagrams, where all external lines are connected to each other. –53– Alan Guth, 8.323 Lecture, May 13, 2008, p. 28. Nontrivial contribution to T: There are 4! ways of contracting the 4 fields with the 4 external lines, so the contribution is λ d4 x e−i(pA +pB −p1 −p2 )·x 4! · −i 4! = −iλ(2π )4 δ (4) (pA + pB − p1 − p2 ) ≡ iM(2π )4 δ (4) (pA + pB − p1 − p2 ) , so M = −λ . –54– Repeating, M = −λ . By our previous rules, this implies dσ dΩ = cm λ2 . 2 64π 2 Ecm For σtotal one uses the fact that the two final particles are identical. If we integrate over all final angles we have double-counted, so we divide the answer by 2!. σtotal = λ2 1 = × 4π × 2E 2 64π cm 2! λ2 . 2 32πEcm –55– Alan Guth, 8.323 Lecture, May 13, 2008, p. 29. ����������� Consider the 2nd order diagram Contribution is 1 2 d4 p i 4 p 2 − m2 ( 2π ) i d4 k 4 k 2 − m2 ( 2π ) × (−iλ)(2π )4 δ (4) (pA + pB − p1 − p2 ) × (−iλ)(2π )4 δ (4) (pB − p ) . Note that δ (4) (pB − p ) =⇒ p 2 = m2 , so 1 1 =, 2 p −m 0 2 which is infinite. Any diagram in which all the momentum from one external line is channeled through a single internal line will produce an infinite propagator. –56– Note that δ (4) (pB − p ) =⇒ p 2 = m2 , so 1 1 =, 2 p −m 0 2 which is infinite. Any diagram in which all the momentum from one external line is channeled through a single internal line will pro duce an infinite propagator. Amputation: Eliminate all diagrams for which cutting a single line results in separating a single leg from the rest of the diagram. For example, –57– Alan Guth, 8.323 Lecture, May 13, 2008, p. 30. ������� ����� ��� λφ4 �� �������� ��� �� iM · (2π )4 δ (4) (pA + pB − pf ) = (sum of all connected, amputated diagrams) , where the diagrams are constructed by the following rules: –58– ������� ����� ��� λφ4 �� �������� ��� �� iM = (sum of all connected, amputated diagrams) , where the diagrams are constructed by the following rules: –59– Alan Guth, 8.323 Lecture, May 13, 2008, p. 31. ������� ����� ��� �������� � Time-dependent p erturbation theory: Generalizes easily, since relations: ¯ Ω T φ...ψ ...ψ ... = I 0T I is bilinear in Fermi fields, so it obeys commutation Ω ¯ φI . . . ψI . . . ψ I . . . exp −i d4 z � I (z ) 0 I ,connected = Sum of all connected diagrams with specified external points . But, to use Wick’s theorem, we must define time-ordering and normal ordering for fermion operators. –60– ������������ ����� �� �� ����� ������� Suppose x and y are spacelike separated, with y 0 > x0 . Then ψ (x)ψ (y ) = −ψ (y )ψ (x) . The RHS is already time-ordered, so T {−ψ (y )ψ (x)} = −ψ (y )ψ (x). If T is to act consistently on both sides, then T {ψ (x)ψ (y )} = −ψ (y )ψ (x) . Generalizing, T {ψ1 ψ2 . . . ψn } = (product of ψ ’s ordered by time, earliest to right) × (−1)N , where N is the number of interchanges necessary to bring the ordering on the LHS to the ordering on the RHS. (Here ψ represents a general Fermi field, ψ ¯ or ψ .) –61– Alan Guth, 8.323 Lecture, May 13, 2008, p. 32. ��� ������� ����������� By this definition ¯ T {ψ (x)ψ(y )} ≡ ¯ ψ (x)ψ(y ) for x0 > y 0 ¯ −ψ (y )ψ (x) for y 0 > x0 . In free field theory we have already learned that ¯ 0 T { ψ ( x) ψ ( y ) } 0 = d4 p i( p + m) −ip·(x−y) e ≡ SF (x − y ) . (2π )4 p2 − m2 + i –62– For p = q , �������������� ����� �� �� ����� ���������� as (q )as † (p ) = −as † (p )as (q ) . The RHS is normal-ordered, so one presumably defines N {−as † (p )as (q )} = −as † (p )as (q ). If N is to act consistently on both sides, then N {as (q )as † (p )} = −as † (p )as (q ) . Generalizing, N {product of a’s and a† ’s} = (pro duct with all a’s to the right) × (−1)N , where N is the number of interchanges necessary to bring the ordering on the LHS to the ordering on the RHS. –63– Alan Guth, 8.323 Lecture, May 13, 2008, p. 33. �� ��� �������� ¯ ¯ T {ψ1 ψ 2 ψ3 . . .} = N {ψ1 ψ 2 ψ3 . . . + (all possible contractions)} . A sample contraction would be –64– ...
View Full Document

This note was uploaded on 11/08/2011 for the course PHY 8.323 taught by Professor Staff during the Spring '08 term at MIT.

Ask a homework question - tutors are online