lec9_crew_pairing_and_aircraft_routing_2003

# lec9_crew_pairing_and_aircraft_routing_2003 -...

This preview shows pages 1–10. Sign up to view the full content.

1 .206J/16.77J/ESD.215J    Airline Schedule Planning Cynthia Barnhart Spring 2003

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
The Extended Crew Pairing  Problem with Aircraft  Maintenance Routing Outline – Review of Individual Problems  – Interdependence and motivation for an  alternative approach – Sequential Approaches – Integrated Approaches – Comparison of Models
The Maintenance Routing  Problem ( MR • Given: – Flight Schedule for a single fleet • Each flight covered exactly once by fleet – Number of Aircraft by Equipment Type • Can’t assign more aircraft than are available – FAA Maintenance Requirements – Turn Times at each Station – Through revenues for pairs or sequences of  flights – Maintenance costs per aircraft

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
MR Problem Objective • Find: – Revenue maximizing assignment of aircraft of  a single fleet to scheduled flights such that each  flight is covered exactly once, maintenance  requirements are satisfied, conservation of flow  (balance) of aircraft is achieved, and the  number of aircraft used does not exceed the  number available
MR String Model: Variable  Definition • A string is a sequence of flights beginning  and ending at a maintenance station with  maintenance following the last flight in the  sequence – Departure time of the string is the departure  time of the first flight in the sequence – Arrival time of the string is the arrival time of  the last flight in the sequence + maintenance  time

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
MR String Model: Constraints • Maintenance constraints – Satisfied by variable definition • Cover constraints – Each flight must be assigned to exactly one  string • Balance constraints – Needed only at maintenance stations • Fleet size constraints – The number of strings and connection arcs  crossing the count time cannot exceed the  number of aircraft in the fleet
MR String Model: Solution • Integer program – Branch-and-bound with too many variables  to consider all of them – Solve Linear Program using  Column  Generation • Branch-and-Price – Branch-and-bound with bounding provided  by solving LP’s using column generation at  each node of the branch-and-bound tree

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Crew Pairing Problem ( CP • Given: – Flight Schedule for a  fleet family • Each flight covered exactly once  • Usually daily or weekly schedule – FAA and Collective Bargaining Agreements • Rest • Maximum duty, sit, flying times in a duty • 8-in-24 rule • Maximum time-away-from-base • Brief/debrief – Crew base locations – Minimum connection times between aircraft at each  station – Number of crews at each crew base
• Duty cost is maximum of: – Flying time f * elapsed duty time – Minimum duty pay

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

## This note was uploaded on 11/08/2011 for the course AERO 16.72 taught by Professor Hansman during the Fall '06 term at MIT.

### Page1 / 44

lec9_crew_pairing_and_aircraft_routing_2003 -...

This preview shows document pages 1 - 10. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online