Approximating square roots

Approximating square roots - Simplifying square roots...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
Approximating square roots To find the square root of a number that is not a perfect square, it will be necessary to find an  approximate  answer by using the procedure given in Example .  Example 1 Approximate  Since 6 2  = 36 and 7 2  = 49, then  is between  and  Therefore,  is a value between 6 and 7. Since 42 is about halfway between 36 and 49, you can  expect that  will be close to halfway between 6 and 7, or about 6.5. To check this estimation, 6.5  × 6.5 = 42.25, or about 42.  Square roots of nonperfect squares can be approximated, looked up in tables, or found by using a  calculator. You may want to keep these two in mind: 
Background image of page 1
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Simplifying square roots Sometimes you will have to simplify square roots, or write them in simplest form. In fractions, can be reduced to . In square roots, can be simplified to . There are two main methods to simplify a square root. Method 1: Factor the number under the into two factors, one of which is the largest possible perfect square. (Perfect squares are 1, 4, 9, 16, 25, 36, 49, ) Method 2: Completely factor the number under the into prime factors and then simplify by bringing out any factors that came in pairs....
View Full Document

This note was uploaded on 11/09/2011 for the course MATH 1310 taught by Professor Staff during the Fall '07 term at Texas State.

Ask a homework question - tutors are online