Example 11

# Example 11 - factors x 2 xy 2 y = x xy 2 2 y Grouping gives x xy(2 2 y Now factoring gives x(1 y 2(1 y Using the distributive property gives x 2(1

This preview shows page 1. Sign up to view the full content.

Example 11 Factor 3  x 2  – 48.  Factoring out a 3 leaves 3(  x 2  – 16)  But  x 2  – 16 is the difference between two squares and can be further factored into (  x  + 4)(  x  – 4).  Therefore, when completely factored, 3  x 2  – 48 = 3(  x  + 4)(  x  – 4).  Factoring by grouping Some polynomials have binomial, trinomial, and other polynomial factors. Example 12 Factor  x  + 2 +  xy  + 2  y Since there is no monomial factor, you should attempt rearranging the terms and looking for binomial
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: factors. x + 2 + xy + 2 y = x + xy + 2 + 2 y Grouping gives ( x + xy ) + (2 + 2 y ) Now factoring gives x (1 + y ) + 2(1 + y ) Using the distributive property gives ( x + 2)(1 + y ) You could rearrange them differently, but you would still come up with the same factoring....
View Full Document

## This note was uploaded on 11/09/2011 for the course MATH 1310 taught by Professor Staff during the Fall '07 term at Texas State.

Ask a homework question - tutors are online