Finding the equation of a line

Finding the equation of a line - 2 Use any point known to...

Info icon This preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
Finding the equation of a line To find the equation of a line when working with ordered pairs, slopes, and intercepts, use one of the  following approaches depending on which form of the equation you want to have. There are several  forms, but the three most common are the  slope-intercept form , the  point-slope form , and the  standard form.  The slope-intercept form looks like  y  =  mx  +  b  where  m  is the slope of the line and  is the  y -intercept. The point-slope form looks like  y  –  y 1  =  m x  –  x 1 ) where  m  is the slope of the line  and (  x 1 y 1 ) is any point on the line. The standard form looks like  Ax  +  By  =  C  where, if possible,  A B , and  C  are integers.  Slope–intercept form. 1. Find the slope,  m 2. Find the  y -intercept,  b 3. Substitute the slope and  y -intercept into the slope-intercept form,  y  =  mx  +  b Point-slope form. 1. Find the slope,  m
Image of page 1
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 2. Use any point known to be on the line. 3. Substitute the slope and the ordered pair of the point into the point-slope form, y – y 1 = m ( x – x 1 ). Note: You could begin with the point-slope form for the equation of the line and then solve the equation for y. You will get the slope-intercept form without having to first find the y-intercept. Standard form. 1. Find the equation of the line using either the slope-intercept form or the point-slope form. 2. With appropriate algebra, arrange to get the x-terms and the y-terms on one side of the equation and the constant on the other side of the equation. 3. If necessary, multiply each side of the equation by the least common denominator of all the denominators to have all integer coefficients for the variables....
View Full Document

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern