Finding the equation of a line

Finding the equation of a line - 2. Use any point known to...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
Finding the equation of a line To find the equation of a line when working with ordered pairs, slopes, and intercepts, use one of the  following approaches depending on which form of the equation you want to have. There are several  forms, but the three most common are the  slope-intercept form , the  point-slope form , and the  standard form.  The slope-intercept form looks like  y  =  mx  +  b  where  m  is the slope of the line and  is the  y -intercept. The point-slope form looks like  y  –  y 1  =  m x  –  x 1 ) where  m  is the slope of the line  and (  x 1 y 1 ) is any point on the line. The standard form looks like  Ax  +  By  =  C  where, if possible,  A B , and  C  are integers.  Slope–intercept form. 1. Find the slope,  m 2. Find the  y -intercept,  b 3. Substitute the slope and  y -intercept into the slope-intercept form,  y  =  mx  +  b Point-slope form. 1. Find the slope,  m
Background image of page 1
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 2. Use any point known to be on the line. 3. Substitute the slope and the ordered pair of the point into the point-slope form, y y 1 = m ( x x 1 ). Note: You could begin with the point-slope form for the equation of the line and then solve the equation for y. You will get the slope-intercept form without having to first find the y-intercept. Standard form. 1. Find the equation of the line using either the slope-intercept form or the point-slope form. 2. With appropriate algebra, arrange to get the x-terms and the y-terms on one side of the equation and the constant on the other side of the equation. 3. If necessary, multiply each side of the equation by the least common denominator of all the denominators to have all integer coefficients for the variables....
View Full Document

Ask a homework question - tutors are online