Multiplying monomials

Multiplying monomials - ) = 3 a 2 b 3 + 2 c 1 + 2 d = 3 a 2...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
Multiplying monomials Reminder: The rules and definitions for powers and exponents also apply in algebra.  Similarly,  a  ∙  a  ∙  a  ∙  b  ∙  b  =  a 3   b 2 To  multiply monomials,  add the exponents of the same bases.  Example 2 Multiply the following. 1. x 3 )(  x 4 ) =  x 3 + 4  =  x 7   2. x 2   y )(  x 3   y 2 ) = (  x 2   x 3 )(  yy 2 ) =  x 2 + 3   y 1 + 2  =  x 5   y 3   3. (6  k 5 )(5  k 2 ) = (6 × 5)(  k 5   k 2 ) = 30  k 5 + 2  = 30  k 7   (multiply numbers)  4. –4(  m 2   n )(–3  m 4   n 3 ) = [(–4)(–3)](  m 2   m 4 )(  nn 3 ) = 12  m 2 + 4   n 1 + 3  = 12  m 6   n 4   (multiply  numbers)  5. c 2 )(  c 3 )(  c 4 ) =  c 2 + 3 + 4  =  c 9   6. (3  a 2   b 3   c )(  b 2   c 2   d ) = 3(  a 2 )(  b 3   b 2 )(  cc 2 )(  d
Background image of page 1
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ) = 3 a 2 b 3 + 2 c 1 + 2 d = 3 a 2 b 5 c 3 d Note that in example (d) the product of 4 and 3 is +12, the product of m 2 and m 4 is m 6 , and the product of n and n 3 is n 4 , because any monomial having no exponent indicated is assumed to have an exponent of l. When monomials are being raised to a power, the answer is obtained by multiplying the exponents of each part of the monomial by the power to which it is being raised....
View Full Document

This note was uploaded on 11/09/2011 for the course MATH 1310 taught by Professor Staff during the Fall '07 term at Texas State.

Ask a homework question - tutors are online