{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Slope and intercept of linear equations

# Slope and intercept of linear equations - y-form 1 2 y =...

This preview shows pages 1–2. Sign up to view the full content.

Slope and intercept of linear equations There are two relationships between the graph of a linear equation and the equation itself that must  be pointed out. One involves the  slope of the line,  and the other involves the point where the  line  crosses the y-axis.  In order to see either of these relationships, the terms of the equation must be in  a certain order.  (+)(1)  y  = ( )  x  + ( )  When the terms are written in this order, the equation is said to be in  y -form.  Y -form is written  y  =  mx  b   , and the two relationships involve  m  and  b Example 3 Write the equations in

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: y-form. 1. 2. y = –2 x + 1 (already in y-form) 3. As shown in the graphs of the three problems in Figure 8, the lines cross the y-axis at –3, +1, and – 2, the last term in each equation. If a linear equation is written in the form of y = mx + b, b is the y-intercept. The slope of a line is defined as and the word “change” refers to the difference in the value of y (or x ) between two points on the line. Note: Points A and B can be any two points on a line; there will be no difference in the slope....
View Full Document

{[ snackBarMessage ]}

### Page1 / 2

Slope and intercept of linear equations - y-form 1 2 y =...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online