The quadratic formula

The quadratic formula - possibilities are distinguished by...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
The quadratic formula Many quadratic equations cannot be solved by factoring. This is generally true when the roots, or  answers, are not rational numbers. A second method of solving quadratic equations involves the use  of the following formula:  a, b,  and  c  are taken from the quadratic equation written in its general form of  ax 2  +  bx  +  c  = 0  where  a  is the numeral that goes in front of  x 2 b  is the numeral that goes in front of  x , and  c  is the  numeral with no variable next to it (a.k.a., “the constant”).  When using the quadratic formula, you should be aware of three possibilities. These three 
Background image of page 1
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: possibilities are distinguished by a part of the formula called the discriminant. The discriminant is the value under the radical sign, b 2 4 ac . A quadratic equation with real numbers as coefficients can have the following: 1. Two different real roots if the discriminant b 2 4 ac is a positive number. 2. One real root if the discriminant b 2 4 ac is equal to 0. 3. No real root if the discriminant b 2 4 ac is a negative number....
View Full Document

This note was uploaded on 11/10/2011 for the course MATH 1310 taught by Professor Staff during the Fall '07 term at Texas State.

Ask a homework question - tutors are online