Lecture17

# Lecture17 - \documentclass[12pt,letterpaper]cfw_article

This preview shows pages 1–3. Sign up to view the full content.

\documentclass[12pt,letterpaper]{article} \ \usepackage{amsmath} \usepackage{amssymb} \usepackage{latexsym} \usepackage{array} \usepackage{enumerate} \usepackage{amsthm} \usepackage{amscd} %\usepackage{verbatim} % \newtheorem{lemma}{Lemma} \newtheorem{theorem}{Theorem} \newtheorem{definition}{Definition} \newtheorem*{remark}{Remark} \ \newcommand{\bC}{{\mathbb C}} \newcommand{\bH}{{\mathbb H}} \newcommand{\bR}{{\mathbb R}} \newcommand{\ra}{\rightarrow} \newcommand{\Ra}{\Rightarrow} \ \newcommand{\ramp}{\mapsto} \newcommand{\myU}{$U$} \newcommand{\CartProd}{X_{1}\times X_{2}} \ \date{} \ \begin{document} \ \title{\bf Lecture 17} \author{} \maketitle \ \noindent {\bf Example}: (Rudin, Chp. 9) Define $f:\bR \ra \bR$ by $f(t) = \left\{ \begin{array}{rl} 0 &t = 0 \end{array} \right. .$ Then $f$ is differentiable and $f'(0) = 1$, yet there is no open interval about $0$ where $f$ is increasing. The lack of continuity of $f'$ at $0$ allows $f$ to be decreasing on arbitrarily small subintervals about $0$. The Inverse Function Theorem {\bf fails} because $f$ is not injective near $0$. \newline \ \noindent {\bf Example}: (Diedonn\'{e}) Define $H: \bR^2 \ra \bR^2$ by $H(x,y) = (x,g(x,y))$ Where, $g(x,y) = \left\{ \begin{array}{rl} \dfrac{y(y-x^2)}{x^2} & y^2 \ge y \ge 0 \\ This preview has intentionally blurred sections. Sign up to view the full version. View Full Document \end{array} \right.$ \newline Then in {\bf fact} \begin{itemize} \item $H$ is differentiable on $\bR^2$ \item $H'_{(0,0)} = I$ \item $H$ is not injective on any open set about $(0,0)$. \end{itemize}
This is the end of the preview. Sign up to access the rest of the document.

## This note was uploaded on 11/09/2011 for the course MAT 6932 taught by Professor Staff during the Spring '10 term at University of Florida.

### Page1 / 4

Lecture17 - \documentclass[12pt,letterpaper]cfw_article

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online