{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Ascending and Descending Order

# Ascending and Descending Order - if asked powers of one...

This preview shows page 1. Sign up to view the full content.

Ascending and Descending Order When working with polynomials that involve only one variable, the general practice is to write them  so that the exponents on the variable decrease from left to right. The polynomial is then said to be  written in  descending order When a polynomial in one variable is written so that the exponents increase from left to right, it is  referred to as being written in  ascending order Example 2 Rewrite the following polynomial in descending powers of  x y 4  + 12 – 15  x 2  + 13  x 3   y  + 17  xy 2   13  x 3   y  – 15  x 2  + 17  xy 2  + 4  y 4  + 12  To add two or more polynomials, add like terms and arrange the answer in descending (or ascending
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: if asked) powers of one variable. Example 3 Find the following sum: • ( x 2 + x 3 – 3 x ) + (4 – 5 x 2 + 3 x 3 ) + (10 – 8 x 2 – 5 x ) • ( x 3 + 3 x 3 ) + ( x 2 – 5 x 2 – 8 x 2 ) + (–3 x – 5 x ) + (4 + 10) • = 4 x 3 – 12 x 2 – 8 x + 14 This problem can also be added vertically. First rewrite each polynomial in descending order, one above the other, placing like terms in the same column. To subtract one polynomial from another, add its opposite....
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online