Trinomials of the Form x

# Trinomials of the Form x - Only one of those pairs of...

This preview shows page 1. Sign up to view the full content.

Trinomials of the Form x^2 + bx + c To factor polynomials of the form  x 2  +  bx  +  c , begin with two pairs of parentheses with  x  at the left of  each.   (  x   )(  x   )  Next, find two integers whose product is  c  and whose sum is  b  and place them at the right of the  parentheses.  Example 1 Factor  x 2  + 8  x  + 12.  x 2  + 8  x  + 12 = (  x   )(  x   )  12 can be factored in a variety of ways:  (1)(12), (–1)(–12), (2)(6), (–2)(–6), (3)(4), (–3)(–4)
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Only one of those pairs of factors sum to 8, namely (2)(6), so x 2 + 8 x + 12 = ( x + 2)( x + 6) Example 2 Factor x 2 – 7 x – 18. –18 can be factored in the following ways: (1)(–18), (–1)(18), (2)(–9), (–2)(9), (3)(–6), (–3)(6) The only combination whose sum is also –7 is (2)(–9), so x 2 – 7 x + 18 = ( x + 2)( x – 9)...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online