{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Linear Inequalities

# Linear Inequalities - isn't a solution it's a critical...

This preview shows pages 1–2. Sign up to view the full content.

Linear Inequalities An  inequality  is a sentence using a symbol other than the equals sign (=). The most common  inequality symbols are <,  , >, and  . To solve an inequality sentence, use exactly the same  procedure that you would if it were an equation, with the following exception. When multiplying (or  dividing) both sides of an inequality by a negative number, the direction of the inequality switches.  This is called the  negative multiplication property of inequality If  a, b , and  c  are real numbers and  c  is negative, and  a < b , then  ac > bc . Or if  a > b , then  ac < bc Example 1 Solve for  x : 3  x  – 7 > 20.  To check the solution, first see whether  x  = 9 makes the equation 3  x  – 7 = 20 true. Even though 9

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: isn't a solution, it's a critical number or dividing point and is important to finding the solution. Now, choose a number greater than 9—10, for example, and see whether that makes the original inequality true. This is a true statement. Since it is impossible to list all the numbers that are greater than 9, use “set builder” notation to show the solution set. { x | x > 9} This is read as “the set of all x so that x is greater than 9.” Many times, the solutions to inequalities are graphed to illustrate the answers. The graph of { x | x > 9}is shown in Figure 1. Figure 1. Note that 9 is not included....
View Full Document

{[ snackBarMessage ]}