The following is a general approach for solving absolute value inequalities of the form

The following is a general approach for solving absolute value inequalities of the form

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
The following is a general approach for solving absolute value inequalities of the form  ax  +  b | <  c   or  |  ax  +  b | >  c   ax  +  b | ≤  c   or  |  ax  +  b | ≥  c   If  c  is negative,  ax  +  b | <  c  has no solutions.  ax  +  b | ≤  c  has no solutions.  ax  +  b | >  c  has as its solution all real numbers.  ax  +  b | ≥  c  has as its solution all real numbers.  If  c  = 0,  ax  +  b | < 0 has no solutions.  ax  +  b | ≤ 0 has as its solution the solution to  ax  +  b  = 0.  ax  +  b | > 0 has as its solution all real numbers, except the solution to  ax  + 
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 11/10/2011 for the course MATH 1310 taught by Professor Staff during the Fall '07 term at Texas State.

Page1 / 2

The following is a general approach for solving absolute value inequalities of the form

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online