Mechanics of Ventilation

Mechanics of Ventilation - Atmospheric pressure is the...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
Mechanics of Ventilation Ventilation, or breathing, is the movement of air through the conducting passages between the atmosphere and the lungs. The air moves through the passages because of pressure gradients that are produced by contraction of the diaphragm and thoracic muscles. Pulmonary ventilation Pulmonary ventilation is commonly referred to as breathing. It is the process of air flowing into the lungs during inspiration (inhalation) and out of the lungs during expiration (exhalation). Air flows because of pressure differences between the atmosphere and the gases inside the lungs. Air, like other gases, flows from a region with higher pressure to a region with lower pressure. Muscular breathing movements and recoil of elastic tissues create the changes in pressure that result in ventilation. Pulmonary ventilation involves three different pressures: Atmospheric pressure Intraalveolar (intrapulmonary) pressure Intrapleural pressure
Background image of page 1
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Atmospheric pressure is the pressure of the air outside the body. Intraalveolar pressure is the pressure inside the alveoli of the lungs. Intrapleural pressure is the pressure within the pleural cavity. These three pressures are responsible for pulmonary ventilation. Inspiration Inspiration (inhalation) is the process of taking air into the lungs. It is the active phase of ventilation because it is the result of muscle contraction. During inspiration, the diaphragm contracts and the thoracic cavity increases in volume. This decreases the intraalveolar pressure so that air flows into the lungs. Inspiration draws air into the lungs. Expiration Expiration (exhalation) is the process of letting air out of the lungs during the breathing cycle. During expiration, the relaxation of the diaphragm and elastic recoil of tissue decreases the thoracic volume and increases the intraalveolar pressure. Expiration pushes air out of the lungs....
View Full Document

This note was uploaded on 11/08/2011 for the course BIOLOGY BSC1086L taught by Professor Leostouder during the Fall '10 term at Broward College.

Ask a homework question - tutors are online