The following simplified semialgebraic analogy may further illustrate the point

# The following simplified semialgebraic analogy may further illustrate the point

This preview shows page 1. Sign up to view the full content.

The following simplified semialgebraic analogy may further illustrate the point.  Suppose the nearly infinite number of possible stimuli (inputs) in a crowded  cafeteria are represented as,  A + B + C + D + E . . . .  (these are the contents of one pan in the above figure). And the equally  nearly infinite variety of behavior (outputs) in that cafeteria is represented  as,  V + W + X + Y + Z . . . .  (which represents the deviation of the pointer from the center of the scale).  The fact that the general behavior which is occurring can be roughly  attributed in some way to the situation can be depicted, therefore, by,  A + B + C + D + E . . . . ----------> V + W + X + Y + Z . . . .  (the weight in the pan causes the needle deviation). Now suppose that you  are in the cafeteria and see a very attractive potential date sitting a few
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: tables away. You add a smile and a nod to the mass of stimuli in the cafeteria. A + B + C + D + E . . . . + P ----------> V + W + X + Y + Z . . . . Much to your satisfaction, the total behavioral picture in the room changes to include a smile, nod and a wave in return. A + B + C + D + E . . . . + P ----------> V + W + X + Y + Z . . . . + S A, B, C, D, E, and P can be seen as the causes for V, W, X, Y, Z, and S. However, we are actually interested in only a subset of all possible causes (i.e., P). We don't really care about the smell of hamburgers. Additionally, we don't really care about all possible dependent variables (e.g., people moving around and talking). We really only care about the wave (i.e., S)....
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online