Trinomials of the Form x

Trinomials of the Form x - + 6) Example 2 Factor x 2 7 x...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
Trinomials of the Form x^2 + bx + c To factor polynomials of the form  x 2  +  bx  +  c , begin with two pairs of parentheses with  x  at the left of  each.   (  x   )(  x   )  Next, find two integers whose product is  c  and whose sum is  b  and place them at the right of the  parentheses.  Example 1 Factor  x 2  + 8  x  + 12.  x 2  + 8  x  + 12 = (  x   )(  x   )  12 can be factored in a variety of ways:  (1)(12), (–1)(–12), (2)(6), (–2)(–6), (3)(4), (–3)(–4) Only one of those pairs of factors sum to 8, namely (2)(6), so  x 2  + 8  x  + 12 = (  x  + 2)(  x
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: + 6) Example 2 Factor x 2 7 x 18. 18 can be factored in the following ways: (1)(18), (1)(18), (2)(9), (2)(9), (3)(6), (3)(6) The only combination whose sum is also 7 is (2)(9), so x 2 7 x + 18 = ( x + 2)( x 9) Example 3 Factor x 2 6 x + 9. 9 can be factored as (1)(9), (1)(9), (3)(3), (3)(3) The only combination whose sum is 6 is (3)(3), so x 2 6 x + 9 = ( x 3)( x 3) = ( x 3) 2...
View Full Document

Page1 / 2

Trinomials of the Form x - + 6) Example 2 Factor x 2 7 x...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online