Trinomials of the Form x

# Trinomials of the Form x - 6 Example 2 Factor x 2 – 7 x...

This preview shows pages 1–2. Sign up to view the full content.

Trinomials of the Form x^2 + bx + c To factor polynomials of the form  x 2  +  bx  +  c , begin with two pairs of parentheses with  x  at the left of  each.   (  x   )(  x   )  Next, find two integers whose product is  c  and whose sum is  b  and place them at the right of the  parentheses.  Example 1 Factor  x 2  + 8  x  + 12.  x 2  + 8  x  + 12 = (  x   )(  x   )  12 can be factored in a variety of ways:  (1)(12), (–1)(–12), (2)(6), (–2)(–6), (3)(4), (–3)(–4) Only one of those pairs of factors sum to 8, namely (2)(6), so  x 2  + 8  x  + 12 = (  x  + 2)(  x

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: + 6) Example 2 Factor x 2 – 7 x – 18. –18 can be factored in the following ways: (1)(–18), (–1)(18), (2)(–9), (–2)(9), (3)(–6), (–3)(6) The only combination whose sum is also –7 is (2)(–9), so x 2 – 7 x + 18 = ( x + 2)( x – 9) Example 3 Factor x 2 – 6 x + 9. 9 can be factored as (1)(9), (–1)(–9), (3)(3), (–3)(–3) The only combination whose sum is –6 is (–3)(–3), so x 2 – 6 x + 9 = ( x – 3)( x – 3) = ( x – 3) 2...
View Full Document

## This note was uploaded on 11/10/2011 for the course MATH 1310 taught by Professor Staff during the Fall '07 term at Texas State.

### Page1 / 2

Trinomials of the Form x - 6 Example 2 Factor x 2 – 7 x...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online