EAS207-Final-exam-sol-2010

EAS207-Final-exam-sol-2010 - EAS 2:07 STATICS Final Exam...

Info iconThis preview shows pages 1–11. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 6
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 8
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 10
Background image of page 11
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: EAS 2:07 - STATICS ' Final Exam , Fall 2010 Total points: 100 Notes: (i). Closed book exam. (ii). Do all problems. . (iii). Draw Free-body Diagrams and reference axes. Q. 1) As shown in Fig.1 a bar AB is resting against a smooth wall and on block C. The weight of bar AB is 500 lbs and that of block Cis 300 lbs. Friction at A is negligible, and the coefficient of static friction is 0.4 at the other two contact surfaces- Evaluate the possibility of bar AB and/or block C sliding under the given condition. (20 points) firm i: so a; bet 3 i; =59 (M 005 50‘?) 00 $05 '30) '6 , ; +(Nfi SM 50?) (is 5;“ ‘35.) {So some”; as) W (/M KNQZZZO»42LS I \ \ (5‘73'30 War-“300 ~N820 ’ ' Nfiiéooirgsw :- 6519M i ~ § ! i «— \‘Nazee’m has Emmy gawk? \\ > (DOC: 5C5 Kigdmaw TINSNC, : (0’4) (699) :: 260g7é 4’53 . 1C6. .4 MSNC -) bxoék C3 WW wilt. R (is: megmimk ' va. kmgofiafi Seafikwe 4 """""" ,\ n...” » "x (a) (3.2) The window in Fig. 2 weighs 40 ii); its center of gravity G is located at the geometric center. Find aii forces acting on the window when it is heid - ' open in the position shown by the rope attached to C. Assume that hinge at B does not provide any reaction aiong x-axis (BX = D). (20 Points) 5‘9 igiw-zzjei—agk —-—::"’ :W C 9 Kim N ‘9 )1?- C1’2)”’+ @837 /\ A :Ng26 _ h I: f“ ' .4‘ “68974 \CD + WINE X 3" +82 > _ fl ‘ h m . § + “gfl‘gx'<~40,v)zo {N , (4634 2L: 5%(013971TCDK -—~ ©A§9E€T§Fj+ofl94§1fipkl Cr“ . r fl) C4. ) >< (By + 532$?) + (4315:4443 54593396 ' 1 :20 A ,.._ 5» 0,6897 Tag :4 ~§~ M9SASS \QDj +027942r+0m9 x A ‘ wésgam +3525: aéo’j‘wM’iSO L ‘ L L r” {mtg 0999729 "~44 =0 % @3184”) Hwfi 1»%.8§7‘TCD +382-€sor=o ékzzmimej @2g8>”37—TED “3335?: ' (813‘: H 22,5 - ‘ . I «M ' FYM QC? 1 QazogzgSWTcwfig A '7‘“) g . ¥ ‘ "I, 1 5 7 HM 86v “C39 ' fiat-140 “Eva’ng X'quzé'FQB] .... .k 0.3) A beam is loaded and supported as shown in Fig. 3. (a) Calculate the support reactions. (5 points) (b) Write the expressionsfor shear-force and bending-moment for a section between points C and D by considering loadings on the left hand side of the section. (5 points) 7 7 (‘gLDrayy complete shear andmbendjng moment diagrams for the beam with“; the aid of the area integration process. Be sure to label the values of shear force and bending moment on the diagram. Atso show the values of ' calculated areas on the shear—force diagram. (10 points) @ W>i ":10 $ I ‘ i«(‘30 Mg?) K C95 E \f 7. szfl M - war—“So +%C><~S>]C%fl:8‘><‘ W28 Z ' , ,— ‘Q.4) The gate AB shown in Fig. 4 has water on one side. The width of the gate (dimension perpendicular to the page) is 4 m, and it weighs 1570 N. Determine the resultant force on the gate clue to fluid pressure. Also calculate the reactions on the gate at A and B. The support at B exerts only . a horizontal reaction on the gate. ' (w ngwtfi 4 QM: V , r (3:) TR?“ ("78/48") + Ragga?" P12 :7: fl” WW? 2: J K g .fl .7... 3 4 #4 7 ax N YW,_}_§W,4,_”.___M mmmm .......... * ~ ''''''''''' “WWW?” ““““““““ “ “ «a, 4”“, "3 m w: ~ J . . A, ‘ V \J \fi «w L» #3: J, “J J ; I_____.._._ _____________ _M _______ . . . y’#,,MnWme’—tm_fi ____________ N" ‘‘‘‘ x f ‘ A ~~~.r.- , ; k ‘ 2’ r ,1 w ‘ ‘ f5. I E»: : yum.» 7 ya...“ 3"» to“: ’ z’ ‘2’! a -4 7,-.. .,, f": if ta” «365;, _ , =‘ f! »».,.,~.»v-;L.; ‘ ‘ \‘ ‘ ' m: . I V ._ , K A f , if; I, u , “my”... M , F WV «X; flu y g ./ ,1 ‘ t '3 #VJ fl erwm_ ..____._M, (2.5) Determine the mass moments of inertia Ex and IXY for the rectangular prism (with two cutouts) shown in Fig. 5. The mass defisity is 10 s'iug/ftB. (20 peints) RQC3§§W a» ’3”, <24)QOD)L7/§fi‘qv> I EX/fi 57733 305 fing.~&j C3) + m 3%,,“ 7:- Sfig'xxo «i- (in.ka C NR“ fix a _ \ KL L M)» ‘ Qt , V ' rung)? 3:. {EX/r \m <fi+%>:flO)YJ X70454 __ f ,. "‘ Jig/:(mnmflta) : “2953-55 W 5* g 359% +WVM3 Cénfi’gqj ‘g "” f , f 2 ix 7‘ ix + max“ g ‘ 1’ ‘ ’“ [x :— §9§3x§£ + (47314) {91,29 (.53? Ix: 5v242é7< \OA" 34mg. Ix :2 <19 <10 -—~ Km Rplflx?x;g 51? Sxéxé, Cj a3’h&fir w ' § T _‘_, w 6 ',__, £3 fl 4; 7 , —- x "‘ 2351*” —-~ 5 £31m 50 ~ 5.24sz WW '''' fl , f" é L, Ix : 2' 203 7‘50 Sxfiwéé? Z ...
View Full Document

This note was uploaded on 11/10/2011 for the course EAS 207 taught by Professor Richards during the Fall '08 term at SUNY Buffalo.

Page1 / 11

EAS207-Final-exam-sol-2010 - EAS 2:07 STATICS Final Exam...

This preview shows document pages 1 - 11. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online