This preview shows pages 1–2. Sign up to view the full content.
This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: diagonal and the Frst two superdiagonals. (4.2.a) Show that Q has nonzero structure such that e T i Qe j = 0 if j < i1, i.e., Q is upper Hessenberg. (4.2.b) Show that T + = RQ is a symmetric triagonal matrix. (4.2.c) Prove the Lemma in the class notes that states that choosing the shift = , where is an eigenvalue of T , results in a reduced T + with known eigenvector and eigenvalue. Problem 4.3 Golub and Van Loan Problem 8.3.1. p. 423 1 Problem 4.4 Golub and Van Loan Problem 8.3.6. p. 424 Problem 4.5 Golub and Van Loan Problem 8.3.8. p. 424 2...
View
Full
Document
This note was uploaded on 11/10/2011 for the course MAD 5932 taught by Professor Gallivan during the Fall '06 term at FSU.
 Fall '06
 gallivan

Click to edit the document details