s08.0 - Last time terminology reminder w Simple graph...

Info iconThis preview shows pages 1–13. Sign up to view the full content.

View Full Document Right Arrow Icon
Last time: terminology reminder w Simple graph Vertex = node Edge Degree Weight Neighbours Complete Dual Bipartite Planar Cycle Tree Path Circuit Components Spanning Tree
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
vertex (node) edge Vertex degree is 3
Background image of page 2
Spanning Trees A spanning tree of a graph G is a tree that touches every node of G and uses only edges from G Every connected graph has a spanning tree
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Dual = put a node in every face, and an edge between every adjacent face Dual Graph
Background image of page 4
G ra ph C o lo uring
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Graph Colouring Graph Colouring Problem: G ive n a g ra ph, c o lo ur a ll the  ve rtic e s  s o  that two  a djac e nt ve rtic e s  g e t diffe re nt c o lo urs . Objective:  us e   m inim um  num b e r o f c o lo urs . 3-c o lo ura ble
Background image of page 6
Optimal Colouring What g raphs  have  c hro m atic  num b e r o ne ? whe n the re  a re  no  e dg e s … Wha t g ra phs  ha ve  c hro m a tic  num be r 2? A pa th?   A c yc le ?  A triang le ? What g raphs  have  c hro m a tic  num be r larg e r tha n 2? Definition. m in #c o lo rs  fo r G  is  chromatic number,  ( G )
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Simple Cycles e ve n (C 2 ) = χ od d 3 ) =
Background image of page 8
n n (K ) = χ Complete Graphs
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
e ve n (W 3 ) = χ od d 4 ) = 5 W Wheels
Background image of page 10
Trees Pic k a ny ve rte x a s  “ro o t.” if (uniq ue ) pa th fro m  ro o t is o dd le ng th: ro o t C a n pro ve  m o re  fo rm a lly us ing  induc tio n (c las s wo rk).
Background image of page 11

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Chromatic Number Wha t g ra phs  are  3-c o lo urab le ? No  o ne  kno ws … Ho w do  we  e s tim a te  the  c hro m atic  num b e r o f a  g ra ph? If the re  is  a  c o m ple te  s ubg ra ph o f s ize  k,  the n we  ne e d a t le as t k c o lo urs ? YES Is  the  c o nve rs e  true ? If a  g ra ph has  no  c o m ple te  s ubg ra ph o f s ize  4,  the n we  c an c o lo ur it us ing  4 c o lo urs ?
Background image of page 12
Image of page 13
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 11/11/2011 for the course MATH 220 taught by Professor Kearn during the Fall '11 term at BYU.

Page1 / 33

s08.0 - Last time terminology reminder w Simple graph...

This preview shows document pages 1 - 13. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online