Summer_School_Projects

Summer_School_Projects -...

Info iconThis preview shows pages 1–6. Sign up to view the full content.

View Full Document Right Arrow Icon
Friday 11 November 2011 Department of Mathematics, www.math.ac.ug 1  Researchable or impossible choice of topic: Insights  from summer schools by J.Y.T.  Mugisha  Biomathematics Modelling Group Makerere University Lecture presented at  DIMACS Advanced Study Institute,  Makerere University,   20 – 31 July, 2009
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Friday 11 November 2011 Department of Mathematics, www.math.ac.ug 2 Introduction The choice of topic to research on during summer school is supposed to be  stimulated from the rather few, very fast presentation from guest lecturers Guest lecturers  often assume an audience that is both biologically and  mathematically stable there is little time for a summer school student to read and internalise the lecture  Then, time comes and the students are put in groups;  of varying background by the end of the day there is a problem to formulate. The question is, when  does the topic look researchable  or impossible?
Background image of page 2
Friday 11 November 2011 Department of Mathematics, www.math.ac.ug 3 CLUES from Other Summer Schools In the following slides, I give a few lessons from other summer  schools on the choice of subject to research on and highlight the  interesting patterns of topic choice
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Friday 11 November 2011 Department of Mathematics, www.math.ac.ug 4 Nature of models Many epidemics take the usual dynamics of being SI, SIS, SIR, SIRS, SIRZ,  SEI,SEIS, SEIR, SEIRS, with others getting new names after identifying their  development pattern such as SVI Then the nature of modelling involved depends on the individual mathematician  expertise and the characteristics of the epidemic: Deterministic ODES,  Stochastic Models, Delay ODES, Discrete Models such as in patched space,  PDEs as in most vaccination models (Measles, Pertussis, Malaria, HIV/AIDS)  and structured models (Age, size, shape)  Also the nature of model analysis depends on the orientation of one's  mathematical skills: You will find a pure mathematician tackle the model analysis  from pure mathematics angle, a dynamical systems person goes straight to  finding strange attractors and whether there will be chaos in the system, an  applied mathematician formulating and analyzing towards that direction and an  algebraist must bring in algebraic approach. 
Background image of page 4
Friday 11 November 2011 Department of Mathematics, www.math.ac.ug 5 But looking for what? In all, there are basic fundamentals that we need the model to bring out 
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 6
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 11/11/2011 for the course MATH 220 taught by Professor Kearn during the Fall '11 term at BYU.

Page1 / 25

Summer_School_Projects -...

This preview shows document pages 1 - 6. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online