VERTEX - Year10Advanced MathematicsA4(iv Findingthevertexby...

Info iconThis preview shows pages 1–5. Sign up to view the full content.

View Full Document Right Arrow Icon
Year 10 Advanced  Mathematics  A4(iv) Finding the vertex by  completing the square
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
e.g.   y = x 2  + 4x + 4 This factorises to…………. And therefore cuts the x-axis once at An equation which happens to be a perfect square is very easy to graph…. . e.g.   y = (x + 2) 2 x = -2 With a y- intercept at y = 4 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 x y
Background image of page 2
If these perfect square equations are written in factored form…. e.g.   y = (x + 2) 2 and then a constant is added or subtracted…. .. e.g.   y = (x + 2) + 2 Then it is still easy to graph, but one more bit of information is given -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 x y This time the previous graph simply moves up  2 units and the axis of symmetry has stayed in the  same place.
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Why bother understanding how to use an equation in this form? Normally this equation would be written in the general form.
Background image of page 4
Image of page 5
This is the end of the preview. Sign up to access the rest of the document.

Page1 / 8

VERTEX - Year10Advanced MathematicsA4(iv Findingthevertexby...

This preview shows document pages 1 - 5. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online