ch07 - Chapter7: InternalForces EngineeringMechanics:Statics

Info iconThis preview shows pages 1–11. Sign up to view the full content.

View Full Document Right Arrow Icon
Engineering Mechanics: Statics Chapter 7:  Internal Forces  
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Chapter Objectives To show how to use the method of sections  for determining the internal loadings in a  member. To generalize this procedure by formulating  equations that can be plotted so that they  describe the internal shear and moment  throughout a member. To analyze the forces and study the  geometry of cables supporting a load.
Background image of page 2
Chapter Outline Internal Forces Developed in  Structural Members Shear and Moment Equations and  Diagrams Relations between Distributed  Load, Shear and Moment Cables
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
7.1 Internal Forces Developed in  Structural Members The design of any structural or  mechanical member requires the  material to be used to be able to resist  the loading acting on the member These internal loadings can be  determined by the method of sections
Background image of page 4
7.1 Internal Forces Developed in  Structural Members Consider the “simply supported” beam To determine the internal loadings acting on the cross  section at C, an imaginary section is passed through  the beam, cutting it into two By doing so, the internal loadings become external on  the FBD
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
7.1 Internal Forces Developed in  Structural Members Since both segments (AC and CB) were in  equilibrium before the sectioning, equilibrium of  the segment is maintained by rectangular force  components and a resultant couple moment Magnitude of the loadings is determined by the  equilibrium equations
Background image of page 6
7.1 Internal Forces Developed in  Structural Members Force component  N , acting normal to the  beam at the cut session and  V , acting t angent to the session are known as normal  or axial force  and the shear force Couple moment  M  is  referred as the bending  moment
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
7.1 Internal Forces Developed in  Structural Members For 3D, a general internal force and couple  moment resultant will act at the section N y  is the normal force, and V x  and V z  are  the shear components M y  is the torisonal or  twisting moment, and  M x  and M z  are the  bending moment  components
Background image of page 8
7.1 Internal Forces Developed in  Structural Members For most applications, these resultant  loadings will act at the geometric center  or centroid (C) of the section’s cross  sectional area Although the magnitude of each loading  differs at different points along the axis  of the member, the method of section  can be used to determine the values
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
7.1 Internal Forces Developed in  Structural Members Free Body Diagrams Since frames and machines are composed of  multi-force members, each of these members will  generally be subjected to internal shear, normal 
Background image of page 10
Image of page 11
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 11/09/2011 for the course STATICS 001 taught by Professor Statics during the Three '11 term at ADFA.

Page1 / 152

ch07 - Chapter7: InternalForces EngineeringMechanics:Statics

This preview shows document pages 1 - 11. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online