Notes-Chapter 4-Part 1

Notes-Chapter 4-Part 1 - LINEARMODELSANDMATRIX ALGEBRA...

Info iconThis preview shows pages 1–9. Sign up to view the full content.

View Full Document Right Arrow Icon
    LINEAR MODELS AND MATRIX  ALGEBRA Chapter 4 Alpha Chiang, Fundamental Methods  of Mathematical Economics 3 rd  edition
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Why Matrix Algebra As more and more commodities are included  in models, solution formulas become  cumbersome. Matrix algebra enables to do us many things:   provides a compact way of writing an equation  system leads to a way of testing the existence of a  solution by evaluation of a determinant gives a method of finding solution (if it exists)
Background image of page 2
Catch Catch: matrix algebra is only applicable  to linear equation systems.   However, some transformation can be  done to obtain a linear relation. y = ax b log y = log a + b log x
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Matrices and Vectors Example of a system of linear equations: c 1 P 1 + c 2 P 2 = -c 0 γ 1 P 1 + γ 2 P 2 = - γ 0 In general, a 11 x 1 + a 12 x 2 +…+ a 1n X n = d 1 a 21 x 1 + a 22 x 2 +…+ a 2n X n = d 2 ……………………………… a m1 x 1 + a m2 x 2 +…+ a mn X n = d m coefficients a ij variables x 1, …, x n constants d 1 , …,d m
Background image of page 4
Matrices as Arrays    11 12 1 1 1 21 22 2 2 2 1 2 n n m m mn n a a a x d a a a x d A x d a a a x dm = = = L L L L L L M M L
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Example: 6x 1 + 3x 2 + x 3 = 22 x 1 + 4x 2 +-2x 3 =12 4x 1 - x 2 + 5x 3 = 10 1 2 3 6 3 1 22 1 4 2 12 4 1 5 10 x A x x d x = - = = -
Background image of page 6
Definition of Matrix A matrix is defined as a rectangular array of numbers, parameters, or variables. Members of the array are termed elements of the matrix. Coefficient matrix: A=[a ij ] 1,2,. .., 1,2,. .., i m j n = =
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Dimension of a matrix = number of rows x number of columns, m x n m rows n columns Note: row number always precedes the column number. this is in line with way the two subscripts are in a ij are ordered. Special case:
Background image of page 8
Image of page 9
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 11/09/2011 for the course ECON 101 taught by Professor Richards during the Spring '11 term at Cambrian College.

Page1 / 32

Notes-Chapter 4-Part 1 - LINEARMODELSANDMATRIX ALGEBRA...

This preview shows document pages 1 - 9. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online