{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Chapter 5 - CHAPTER5 TimeValueofMoney Futurevalue...

Info icon This preview shows pages 1–10. Sign up to view the full content.

View Full Document Right Arrow Icon
6-1 CHAPTER 5 Time Value of Money Future value Present value Annuities Rates of return Amortization Note: Slides have been slightly revised from  those provided by the publisher.
Image of page 1

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
6-2 Time lines Show the  timing  of cash flows ( timing of cash flows  is important because a dollar in year 1 has a higher  value than a dollar in year 2) . Tick marks occur at the end of periods, so Time 0  is today; Time 1 is the end of the first period (year,  month, etc.) or the beginning of the second period. CF 0 CF 1 CF 3 CF 2 0 1 2 3 i%
Image of page 2
6-3 Drawing time lines: $100 lump sum due in 2 years; 3-year $100 ordinary annuity 100 100 100 0 1 2 3 i% 3 year $100 ordinary annuity 100 0 1 2 i% $100 lump sum due in 2 years
Image of page 3

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
6-4 Drawing time lines: Uneven cash flow stream;  CF 0  = -$50,  CF 1  = $100, CF 2  = $75, and CF 3  = $50  100 50 75 0 1 2 3 i% -50 Uneven cash flow stream
Image of page 4
6-5 What is the future value (FV) of an initial  $100 after 3 years, if I/YR = 10%? Example: How much will you  have  in 3 years if you deposit $100 today into  a banking account that pays 10% per year? The FV is equivalent to the amount of money you will have in your banking  account in 3 years Finding the FV of a cash flow or series of cash flows when compound interest  is applied is called compounding. FV can be solved by using the arithmetic, financial calculator, and  spreadsheet methods. FV = ? 0 1 2 3 10% 100
Image of page 5

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
6-6 Solving for FV: The arithmetic method After 1 year: FV 1  = Principal + Interest       = Principal + Principal * Interest Rate  = Principal * (1+ Interest Rate)  = PV ( 1 + i ) = $100 (1.1) = $110.00 After 2 years: FV 2  = ( Principal + Interest Rate) *  ( 1 + i )      = PV ( 1 + i ) = $100 (1.10) 2       =$121.00 After 3 years: FV 3  = PV ( 1 + i ) = $100 (1.10) 3       =$133.10 After n years (the general case): FV n  = PV ( 1 + i ) n
Image of page 6
6-7 Solving for FV: The arithmetic method Mathematically, a $100 deposited for three years will be  growing to $133.10 in three years. FV = PV * (1 + Interest Rate) 3     = PV ( 1 + i )         = $100 (1.10) 3  =$133.10 Alternatively, FV = PV (FVIF i N      = $100 (FVIF 10% 3 )        = $100 * 1.3310 = $133.10
Image of page 7

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
6-8 Solving for FV: The arithmetic method The mathematical formula for the FV:   FV N  = PV*(1+i) N Equivalently:    FV N  = PV* (FVIF i, N ) so    FV Interest Factor = (FVIF i, N ) = (1+i) N
Image of page 8
6-9 Solving for FV: The calculator method Solves the general FV equation.
Image of page 9

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 10
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern