571_5.1 - 5.1 THE SCALAR PRODUCTS IN R n KIAM HEONG KWA p....

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 5.1 THE SCALAR PRODUCTS IN R n KIAM HEONG KWA p. 199 The scalar product in R n is defined by Scalar product h x , y i = x T y = n X i =1 x i y i for any x = ( x 1 ,x 2 , ,x n ) T , y = ( y 1 ,y 2 , ,y n ) T R n . Note that h x , y i = x T y = y T x = h y , x i . The Euclidean length of x is given by Euclidean length k x k = p h x , x i = x T x , while the distance between x and y is Distance k x- y k = p h x- y , x- y i = p ( x- y ) T ( x- y ) . The Euclidean length is a norm on R n . MATLAB function. dot( x , y ) generates the scalar product of two column vectors x , y R n . MATLAB function. norm( x ) or norm( x ,2) generates the length of a vector x R n . p. 201 Let x , y R n . Then Cauchy-Schwarz inequality |h x , y i| k x kk y k and the equality holds if and only if x = c y or y = c x for some c R . Proof. In the case x = , the Cauchy-Schwarz inequality is trivially true. Suppose, in the sequel, that x 6 = . The real-valued function f : R...
View Full Document

Page1 / 3

571_5.1 - 5.1 THE SCALAR PRODUCTS IN R n KIAM HEONG KWA p....

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online